How are the motions and positions of Earth, the Moon and the Sun connected to what happens on Earth?

- A!Day:
- A Month:
- A Year:

\qquad .
\qquad .

Detecting Other Planets in our Galaxy - aka Exoplanets

On what day did the star first start moving away from Earth?
What is the time it takes for the planet to make one full orbit?
On what day (or days) was the planet moving away from Earth with the greatest speed?

Amount of Doppler shift in Star's light \approx

Amount of Doppler shift in Star's light $\approx \mathrm{M}_{\mathrm{p}}$
 $\sqrt{\left(\mathrm{M}_{\mathrm{s}} \times \mathrm{d}\right)}$

In which case would the star's light be Doppler shifted by the greatest amount?

Amount of Doppler shift in Star's light $\approx \frac{\mathrm{M}_{\mathrm{p}}}{\sqrt{\left(\mathrm{M}_{\mathrm{s}} \times \mathrm{d}\right)}}$

In which case would the height of the graph for the star's velocity be tallest?

It is easiest to detect a planet in an extrasolar planet system when
A. a low mass planet is far from a low mass star.
B. a high mass planet is close to a high mass star.
C. a low mass planet is far from a high mass star.
D. a high mass planet is close to a low mass star.
E. a low mass planet is close to a high mass star.

Which extra-solar planet would be most difficult to detect?

Given the location marked on the star's radial velocity curve, at which location in the planet's orbit would you expect the planet to be?

Tutorial: Motion of Extrasolar Planets

- Work with a partner!
- Read the instructions and questions carefully.
- Discuss the concepts and your answers with one another. Take time to understand it now!!!!
- Come to a consensus answer you both agree on.
- If you get stuck or are not sure of your answer, ask another group.

Rank the exoplanet systems A-C, from easiest to detect to hardest to detect?

Given the location marked on the star's radial velocity curve, at which location in the planet's orbit would you expect the planet to be?

