Volume 5: Motion, Student Materials Table of Contents

Contents

Page No.
I. Student Investigations/Activities

Investigation M 1: Constant Motion and the first type of graph
Activity M1.1: Exploring the First Type of Graph
Activity M1.2: What difference would it make if you walked slowly,
but steadily, away from the detector compared to walking faster, but steadily, away from the detector? What about motion toward the detector?
Activity M1.3: What would a position-time graph of the following motion 10 look like?
Activity M1.4: How would you move to exactly match the graph below? 13
Investigation 2: More Constant Motion and the second type of motion graph
Activity M2.1: Exploring the Second Type of Graph
Activity M2.2: What difference would it make on this new type of graph, 21 if you walked slowly, but steadily, away from the detector compared to walking faster, but steadily, away from the detector?
Activity M2.3: What would a velocity-time graph of the following motion 26 look like?
Activity M2.4: How would you move to exactly match the graph below? 29
Activity M2.5: What do you think the position-time graph might look like 34
for a motion that made the velocity-time graph shown?
Activity M2.6: What do you think the velocity-time graph would look like 39 for a motion that made the position-time graph shown?
Investigation 3: Changing Motion and the third graph type
Activity M3.1: If we were to move away first constantly speeding up and then 45 constantly slowing down, what would the graphs look like?
Activity M3.2: Exploring the third type of graph 52
Activity M3.3: What does it appear the signs (+ and -) mean in this 57 third type of graph?
Activity M3.4: If we were to move toward the detector first constantly speeding up and then constantly slowing down, what would the graphs look like?
Activity M3.5: Focus on Physical Science -- Words Used to Describe Ideas 67 About Motion
Investigation 4: More Changing Motion -- A Closer Look
Activity M4.1: If we were to allow a cart to roll down an inclined ramp, 69 what would its velocity and acceleration graphs look like?
Activity M4.2: If we were to allow a cart to roll down an even steeper inclined ramp, what would its velocity and acceleration graphs look like?
Activity M4.3: Using an example to explore what we think is meant by the 83 words "acceleration" and "velocity"
Activity M4.4: If we were to give a cart a quick shove and allow it to coast up 86 and then back down an incline before it is stopped, what would its velocity and acceleration graphs look like?
Activity M4.5: What is apparently meant by "acceleration" and "velocity" in these graphs?
Activity M4.6: Does acceleration have direction? 95
Activity M4.7: Focus on Physical Science-Issues to confront concerning 99 velocity and acceleration and the graphs of velocity and acceleration

