Volume 6: Force, Student Materials Table of Contents

Contents

Page No.

I.	Student Investigations/Activities	U
	Investigation 1: Examining our initial ideas about force	
	Activity F1.1: What do we mean by the term, force, in this context?	1
	Activity F1.2: How might we explain the 'at rest' condition of an object	
	in terms of forces which might be acting on it?	5
	Activity F1.3: What would the forces be like on an object so that the object	8
	maintains a constant velocity?	
	Activity F1.4: What would the forces be like on an object so that it maintains	12
	a constant acceleration?	
	Investigation 2: Forces on objects that move	
	Activity F2.1: Given our conclusions, so far, about how forces relate to	16
	motion, what do you think the motion of the cart will be	
	and what the force on it will be while moving this way?	
	Activity F2.2: How do the motion of the cart and the actual force compare	20
	with our predictions?	20
	Activity F2.3: How does it appear that force is related to motion?	30
	Investigation 3: Extending the Scheme: Friction and Slowing Down	
	Activity F3.1: According to the scheme about forces we have worked out	33
	so far, how big do you think the friction force should be	00
	compared to the pulling force when an object moves with	
	constant velocity?	
	Activity F3.2: The final extension of the scheme-what should the force	40
	be like to result in a constant slowing down of the cart?	
	Investigation 4: Feeling the Force	
	Activity F4.1: How do you think the motions of two falling objects of the	46
	same size compare if one object is metal and one is wood?	
	Activity F4.2: How do you think the forces on two falling objects of the	49
	same size compare if one object is metal and one is wood?	
	Activity F4.3: What makes a "fair" race?	53
	Activity F4.4: What are all the influences which would affect a race	58
	between carts on a horizontal table?	
	Activity F4.5: So, what can we decide about the forces on falling spheres?	61
	Investigation 5: Forces between objects	
	Activity F5.1: If two objects are pulling on opposite ends of a rope, one	65
	which is larger and more powerful than the other, but	
	neither is moving, what are the forces between them like?	
	Activity F5.2: If two objects are attached to opposite ends of a rope and	70
	the larger, more powerful object is pulling the smaller one	
	toward it, what force if any, does each feel from the other?	
	Activity F5.3: If two objects are attached to opposite ends of a rope and	75
	the smaller object is pulling itself toward the larger, what	
	force, if any, does each feel from the other?	
	Activity F5.4: Would it make any difference in the forces if both vehicles	80
	are moving in the same direction, <u>the larger pulling the</u>	
	smaller along?	
	Activity F5.5: Would it make any difference in the forces if both vehicles	85
	are moving in the same direction, the smaller bulling the	
	larger along?	