Engaging Students and Supporting Learning with PhET Interactive Simulations

Rebecca Vieyra

Associate Director of Global Initiatives University of Colorado Boulder

By the end of this session, you will be able to:

- Find and use PhET simulations and lessons for your course
- Describe the PhET design philosophy
- Explain when, where, how and why you might use interactive simulations in teaching
- Write effective sim-based interactive engagement questions and activities

Have you used PhET simulations?

Your experience is a resource for others:

Discuss: Share the...

- course (intro, modern, stat mech, etc)
- context (lecture, lab, homework, etc)
- simulation

Science is...

Science learning is often far from practice.

In lab: Directed Procedures In class: Content Knowledge

Goal: To make physics learning more:

- ENGAGING: Interact & discover key ideas
- **RELEVANT**: Connect to everyday life
- ACCESSIBLE: Intuitive and understandable
- **EFFECTIVE**: Use STEM practices and develop understanding
- **PERSONALIZED**: Student agency

Make learning physics more like doing physics.

A Brief History of PhET Interactive Simulations

To learn science and mathematics

2001 Nobel Prize in Physics

Founded by Carl Wieman in 2002 **PhET** (**Ph**ysics **E**ducation **T**echnology)

A Brief History of PhET Interactive Simulations

Physics Education Research Group

Simulation Development

Product Development

Research

Today: Over 190 simulations - all free

Acid-Base Solutions

Area Builder

5

Activity #1: Explore a Sim!

What are your favorite features?

Benefits of Using PhET Simulations

INTERACTIVE VISUALIZATION: Foster visual, dynamic learning of scientific concepts.

COGNITION: Aids learning through scaffolding, reducing cognitive load.

SELF-ASSESSMENT: Provide real time feedback with minimal explicit guidance.

REINFORCEMENT: Support multiple representations, pacing and self-directed learning.

AGENCY: Guides students without feeling guided.

Sims are specifically designed to support students in constructing a robust conceptual understanding of math and science topics through exploration.

Evidence of increased learning

A greater percentage of students answer conceptual questions correctly when a sim is used in demos vs. physical equipment.

In-Class Questions

Perkins, K., et al. (2006). Physics Teacher, 44(18).

Evidence of increased learning

Exam Questions sim (N =99) 0.9 Equi(N=132) 0.8 correct 0.7 0.6 0.5 0.4 \$ 0.3 0.2 0.1 0 Q1 Q2 Q3 Control

A greater percentage of students answer conceptual questions correctly when they do experiments with sim, followed by real equipment, compared with only using physical equipment.

Finkelstein, N., et al. (2005). *Physical Review Special Topics-Physics Education Research*, 1(1), 010103.

? Discuss: What science practices do you see students engaging in?

Moore et al. Chemistry Education Research and Practice, 14(3), 257-268, 2013.

Evidence of increased engagement

The power of 10 min of free exploration: Molecular Polarity

Analysis of 80 students working in groups:

- Explore 80% of all sim features across 3 screens
- Majority of talk about polarity

Торіс	% of Utterances
Group Arrangement (Pre-Sim Use)	6%
Chemistry Concept - polarity	62%
Instructor-Student - polarity	2%
School - homework, lab	10%
Off-topic	20%

Moore et al. (2013). *Chemistry Education Research and Practice*, 14(3), 257-268, 2013.

Evidence of new classroom norms

Atabas, S. et al. (2020). A tale of two sets of norms: Comparing opportunities for student agency in mathematics lessons with and without interactive simulations. *The Journal of Mathematical Behavior, 58*, 100761.

Flexible

Sim Design: Open, flexible tools. Adaptable to your class.

Sim Design: Supports multiple learning goals.

CONTENT: Concepts, Models, Representations, Relationships

PROCESS: Explore, Question, Design, Predict, Data, Evidence, Reason

SOFT SKILLS: Argumentation, Collaboration, Planning, Reflection **HARD SKILLS:** Lab techniques, Quantitative problem solving

AFFECTIVE: Enjoyable, Understandable, Relevant, Student Agency

Integrating PhET in Introductory Physics

Sims + Effective Pedagogies

- Whole-Class Inquiry
- Interactive Lecture Demonstrations
- Concept Questions w/Peer Instruction
- Challenge Prompts

Sim-based Learning

Teaching with PhET Sims

Whole Class: Concept Question w/Peer Instruction

I move the reference height for zero of Potential Energy up to the **starting point** of the Skateboarder (skateboarder still starts from rest).

The total energy of the system is now:

- A) Zero
- B) Positive
- C) Negative
- D) Depends on the position of the skateboarder

?

Whole Class: Concept Question w/Peer Instruction

I move the reference height for zero of Potential Energy up to the **starting point** of the Skateboarder (skateboarder still starts from rest).

The total energy of the system is now:

- A) Zero
- B) Positive
- C) Negative
- D) Depends on the position of the skateboarder

Discuss: What are some science practices students engage in while considering this question?

Activity #2: Write a Concept Question!

Write 1 or more concept questions for a simulation of your choice.

Be prepared to share your concept question.

Small Group/Ind.: Promoting Engaging and Inquiry

Top Tip #1:

Start with an "open explore" question.

- Play with this simulation and develop your own ideas.
- Record a few discoveries you make.

Small Group/Ind.: Promoting Engaging and Inquiry

Top Tip #2:

Use challenge prompts rather than

direct specific instruction.

Small Group/Ind.: Promoting Engaging and Inquiry

Before: Direct Instruction

- Set the canon angle to 45 degrees.
- Measure distance for speeds of 5, 10, 15 m/s.
- Graph launch speed vs distance traveled

Challenge Prompts

Before: Direct Instruction

- Set the canon angle to 45 degrees.
- Measure distance for speeds of 5, 10, 15 m/s.
- Graph launch speed vs. distance traveled.

Rewrite as: Challenge Prompt:

Challenge Prompts

Before: Direct Instruction

- Set the canon angle to 45 degrees.
- Measure distance for speeds of 5, 10, 15 m/s.
- Graph launch speed vs distance
 traveled

Rewrite as: Challenge Prompt:

What are all the ways to affect a projectile's horizontal landing distance?

Challenge Prompts

Find all the ways to... increase the force of gravity.

What's the largest... dipole moment you can make?

Create... an atom with a net charge of zero.

How can increase/decrease... the current?

Develop a procedure for... measuring the speed of the wave.

How do you know... if the spring constant is the same?

Activity #3: Challenge Prompts

Write 1 or more challenge prompts for a simulation of your choice.

Be prepared to share one of your challenge prompts

Example Activity

Masses and Springs

5-10 minutes of play - No instructions.

Challenge 1: Using data from the sim, make a graph that shows whether or not the springs obey Hooke's Law.

Challenge 2: What is the mass of the orange weight?

Challenge 3: Determine the spring constant in two different ways: with your graph from (1) and with the stopwatch.

Find Teaching Resources

General tips for using PhET

Remote learning tips

Sim-specific resources

- Standards alignment
- Learning goals
- Teacher tips document
- Lessons and activity sheets
- Translated sims

Teacher Resources

Q (2)

DONATE

LEIFIphysik

SIMULATIONS TEACHING RESEARCH ACCESS & INCLUSION

Translations

Translated Sims

LANGUAGE	LANGUAGE (TRANSLATED)	NUMBER OF TRANSLATIONS
Afrikaans	Afrikaans	23
Albanian	shqip	171
Amharic	Amharic	90
Arabic	العربية	179
Arabic (Morocco)	العربية (المغرب)	1
Arabic (Saudi Arabia)	العربية (السعودية)	80
Armenian	Armenian	48
Azerbaijani	Azerbaijani	39
Bashkir	Bashkir	1
Basque	Euskara	217
Belarusian	беларускі	111
Bengali	Bengali	5
Bosnian	Bosanski	218
Bulgarian	български	66
Catalan	català	78

Accessibility Features

Accessibility Features

Alternative Input (e.g., keyboard navigation) 🕀

C↓ Sound and Sonification ⊕

Districtive Description on Mobile Devices 🕀

Pan and Zoom 🕀

Prototypes

Prototypes are only available in English but will be made translatable once published to the PhET website.

Caution: these simulations are not feature complete or fully tested, so you may find bugs or other issues. OneNote does not support embedding these prototypes.

Density

Greenhouse Effect

Circuit Construction Kit: AC

Offline Access

Desktop/Laptop Computer

Chromebook

iPad

Q&A and Thank you!

CONNECT

- FIND PHETWebsite: https://phet.colorado.eduPhET iOS and Android Apps (\$0.99):
- **USE SIMS** In classroom, teacher PD, or curriculum
- CONTRIBUTEBecome a supporter: https://phet.colorado.edu/mr/donateContribute lessons and activities

@PhETsims /PhETsims
f

