The State-of-the-Art in Nuclear Power: Breeder Reactors and Beyond

American Association of Physics Teachers Jacksonville, Florida January 11, 2011

K. L. Peddicord, Director Nuclear Power Institute Professor of Nuclear Engineering Texas A&M University

Uses of Primary Energy

Lecture 2

Today's Reactors

- Current world fleet totals 440 reactors
- Operating in 39 countries
- Generates approximately 20% of the global electricity, or 6% of the primary energy
- Most are light water reactors

Plans for New Reactors

- New construction underway of 61 reactors
- An additional 149 are planned
- In the U.S., 30 new plants have been announced to the Nuclear Regulatory Commission
- Two under construction in Georgia
- Globally some 53 new countries have announced their interest in nuclear to the International Atomic Energy Agency
- First will be built in the United Arab Emirates

Nuclear Units Under Construction and Planned Worldwide

Sources: International Atomic Energy Agency for units under construction and World Nuclear Association for units on order or planned. *Chart includes only countries with units under construction. **Countries planning new units are not all included in the chart. Planned units = Approvals, funding or major commitment in place, mostly expected in operation within 8-10 years. Updated: 8/10

Important Parameters

Neutrons

Uranium-235 nucleus

The "reference" fissile isotope is U-235. Occurs in nature. Plentiful. Approximately 0.74% of natural uranium is U-235. Remainder U-238.

Important Parameters (cont.)

Neutrons

The "best" neutrons to be absorbed by U-235 are slow moving or "thermal" neutrons.

Important Parameters (cont.)

Neutrons

Approximately 84% of the thermal neutrons absorbed by a U-235 nucleus will cause fission. Each fission event releases about 2.43 new fast high energy neutrons, ~2 Mev.

Important Parameters (cont.)

Neutrons

For a light water reactor, the enrichment of the fuel must be increased to 3.5% to 5% U-235. The predominant fuel is UO₂.

Introduction to Nuclear Power Systems, Pavel V. Tsvetkov (NUEN, Texas A&M)

Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- LWR-PWR, BWR
- CANDU
- VVER/RBMK

Generation III

Advanced

- ABWR
- System 80+
- AP600
- EPR

Generation III Evolutionary Designs Offering Improved Economics

Generation III+

- AP1000
- ACR700
- IRIS

- Highly Economical
- Enhanced Safety
- Minimize Wastes
- Proliferation Resistant

Generation-l 1950's and 60's

- Demonstrated nuclear power as central station generation of electricity
- Focused on light water and gas cooled designs
- Good performance
- Magnox plants in the United Kingdom operated for up to 50 years

Introduction to Nuclear Power Systems, Pavel V. Tsvetkov (NUEN, Texas A&M)

Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- LWR-PWR, BWR
- CANDU
- VVER/RBMK

Generation III

Advanced

- ABWR
- System 80+
- AP600
- EPR

Generation III Evolutionary Designs Offering Improved Economics

Generation III+

- AP1000
- ACR700
- IRIS

- Highly Economical
- Enhanced Safety
- Minimize Wastes
- Proliferation Resistant

Generation-II

- Designed in the 1960's and 1970's
- Each unit tended to be unique, contributing to increasing costs
- Little standardization, except for France
- Extensive design margins
- Improved analytical techniques had led power up-rates
- Outage management has resulted in higher capacity factors
- Achieved good, safe, economical performance

Generation II—Major Advances

Increased capacity factors and power up-rates equivalent to 23 new 1000 MWe Plants

Source: Nuclear Energy Institute (2008)

October 15, 2009

U. S. NUCLEAR POWER PLANTS

Introduction to Nuclear Power Systems, Pavel V. Tsvetkov (NUEN, Texas A&M)

Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- LWR-PWR, BWR
- CANDU
- VVER/RBMK

Generation III

Advanced

- ABWR
- System 80+
- AP600
- EPR

Generation III Evolutionary Designs Offering Improved Economics

Generation III+

- AP1000
- ACR700
- IRIS

- Highly Economical
- Enhanced Safety
- Minimize Wastes
- Proliferation Resistant

Generation-III and Generation-III⁺

- Population and economic growth
- Pressure on fossil fuels
- Avoidance of CO₂ emissions
- Renewed interest in nuclear
- Foster new evolutionary designs
- Contributing to standardized, certified designs

Gen-III and III⁺ (continued)

- Evolutionary changes, including passive safety features
- Simplified designs, reduction in the number of components, improve reliability
- Examples:
 - ABWR (Advanced Boiling Water Reactor)
 - EPR (European Pressurized Water Reactor)
 - AP-1000 (Advanced Pressurized Water Reactor)
 - ESBWR (Economic Simplified Boiling Water Reactor)

Generation-III and III⁺ Designs

October 15, 2009

US APWR (1700 MWe)

New Construction

Introduction to Nuclear Power Systems, Pavel V. Tsvetkov (NUEN, Texas A&M)

Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- LWR-PWR, BWR
- CANDU
- VVER/RBMK

Generation III

Advanced

- ABWR
- System 80+
- AP600
- EPR

Generation III Evolutionary Designs Offering Improved Economics

Generation III+

- AP1000
- ACR700
- IRIS

- Highly Economical
- Enhanced Safety
- Minimize Wastes
- Proliferation Resistant

Generation-IV Systems

Sustainability-1

Generation IV nuclear energy systems will provide sustainable energy generation that meets clean air objectives and promotes longterm availability of systems and effective fuel utilization for worldwide energy production.

Sustainability-2

Generation IV nuclear energy systems will minimize and manage their nuclear waste and notably reduce the long-term stewardship burden thereby improving protection for the public health and the environment.

Proliferation Resistance and Physical Protection-1

Generation IV nuclear energy systems will increase the assurance that they are a very unattractive and the least desirable route for diversion or theft of weapons-usable materials and provide increased physical protection against acts of terrorism.

Goals for Generation IV Nuclear Energy Systems

Economics-1

Generation IV nuclear energy systems will have a clear life-cycle cost advantage over other energy sources.

Economics-2

Generation IV nuclear energy systems will have a level of financial risks comparable to other energy projects.

Safety and Reliability -1

Generation IV nuclear energy systems operations will excel in safety and reliability.

Safety and Reliability-2

Generation IV nuclear energy systems will have a very low likelihood and degree of reactor damage.

Safety and Reliability -3

Generation IV nuclear energy systems will eliminate the need for offsite emergency response.

Generation-IV Systems

- Very-High-Temperature Reactor (VHTR): a graphite-moderated, helium-cooled reactor, once-through uranium fuel cycle
- **Supercritical-Water-Cooled Reactor (SCWR)**: high-temperature, high-pressure water-cooled design, operates above the critical point of water
- **Gas-Cooled Fast Reactor (GFR)**: features a fast-neutron-spectrum, helium-cooled reactor and closed fuel cycle
- Sodium-Cooled Fast Reactor (SFR): sodium coolant, closed fuel cycle, efficient management of actinides and conversion of fertile uranium
- Lead-Cooled Fast Reactor (LFR): fast-spectrum lead or lead/bismuth eutectic coolant, closed fuel cycle, very efficient conversion of uranium and actinides
- **Molten Salt Reactor (MSR)**: circulating molten salt fuel mixture, epithermalspectrum reactor, full actinide recycle fuel cycle

World Energy Perspective

Projected growth over the next half century (International Nuclear Societies Council)

Year	Population	GJ/Person	Total Energy
	(Billions)		(EJ)

2000	6	67	400
2050	10	100*	1000

* NOTE: U.S. Today ~ 300 GJ/Person 100 GJ/Person represents 5 times increase for poor nations

Laherrere's Oil Production Forecast, 1930-2150.

Energy Availability

Environmental Considerations

- Global climate change and global warming
 Link to CO₂ emissions
 Pressures to move to non-CO₂
 - emitting sources of primary energy

Emission-Free Sources of Electricity

Introduction to Nuclear Power Systems, Pavel V. Tsvetkov (NUEN, Texas A&M)

Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- CANDU
- VVER/RBMK

- ABWR
- System 80+
- AP600
- EPR

- IRIS

SMR's

Resistant

0	Gen I		Gen II		Gen I	I	Gen III+		Gen IV
1950	1960	1970	1980	1990	2000	2010	2020	2030	
Lecture 2					7				

Small Modular Reactors (SMR's)

- A more recent development
- An alternative to large scale systems
- Provide opportunities to use nuclear for applications other than electricity
- Power levels
 - 25 Mwe to 300 Mwe

Other Important Parameters

Neutrons

U-238 will absorb a neutron. After two beta decays, becomes Pu-239. Th-232 will become U-233. Both are fissionable.

Other Important Parameters (cont.)

Neutrons absorbed that do not cause fission lead to the heavier isotopes, or actinides. Very long half lives.

Other Important Parameters (cont.)

Fast, or highly energetic neutrons, cause a higher percentage of fissions when absorbed. Produce more neutrons for each fission.

Nuclear Energy From Fission

Reactor fuel consists of UO_2 . After 4 ½ years at the "endof-life", about 4% of the atoms are radioactive. 95% of these are the fission products, with half lives of about 30 years or less. The remainder are the actinides.

The Story of Dr. Peddicord's Pick-up Truck

Dr. Peddicord's Pick-up Truck

- I have a pick-up truck (that part is true)
- It is a special pick-up truck (that part is true too)

a 3/4 ton Ford F-250

- It has two fuel tanks (true)
- The front tank holds 10 gallons (false)
- The back tank holds 20 gallons (false)

- I go from College Station to Snook, Texas for lunch (often true)
- Snook has two of the best steak houses in Texas

- I fill the front tank with 10 gallons of gasoline (true)
- I fill the back tank with 20 gallons of water (false)
- I drive to Snook and back for lunch, and use up the 10 gallons of gas (almost true)

Dr. Peddicord's Truck--What Happens?

- I have gone to Snook for lunch
- However, because it is a special pick-up truck, while using up the 10 gallons of fuel for the trip, I have converted the 20 gallons of water in the back tank to 20 gallons of gasoline

- I have accomplished my primary mission (going to lunch)
- In doing so I have generated twice as much fuel as I have consumed
- I have a *fast breeder reactor pick-up truck*

- Take out the 20 gallons of gas from the rear tank
- Put 10 gallons in the front tank
- Give 10 gallons to Bubba, who also has a special pick-up truck
- Fill our back tanks with 20 gallons of water each
- Go to Snook again the next day for lunch
- Continue to produce twice as much fuel as we use up

RELATIVE WORLD ENERGY RESOURCES

America the Powerless, Alan E. Waltar, Med. Phys. Publ., 1995

And Beyond...

- Nuclear has the potential to meet an expanding set of energy needs
- Breeder reactors can produce more fuel than they consume
- Using advanced reactor designs, nuclear waste can be used to produce energy
- Radioactive fission products may be used for new applications

Conclusions

- The nuclear field is very dynamic
- Real growth occurring around the world
- Improved designs are coming to the market
- New ideas appearing
- Contributes to nuclear energy making increasingly important and expanded contributions to society's energy needs