Dark Matter in Galaxy Clusters: Past, Present, and Future

David Wittman University of California, Davis

AAPT 2016 Summer Meeting

Dark matter or modified gravity: case study #1

W: Herschel
Discovered Uranus 1781

Suggested causes of poor fit:

- Unseen matter: unseen planet perturbing Uranus
- Modified gravity: inverse-square law may fail at large distances

Suggested causes of poor fit:

- Auxiliary assumptions planet perturbing Uranus
- Modified gravity: inverse-square law may fail at large distances

Suggested causes of poor fit:

- Auxiliary assumptions planet perturbing Uranus
- Unifying theory inverse-square law may fail at large distances

Suggested causes of poor fit:

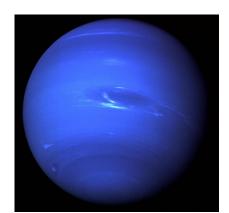
- Auxiliary assumptions planet perturbing Uranus
- Unifying theory inverse-square law may fail at large distances

Another option: reject discrepant data

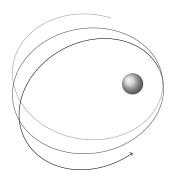
Are these options equally likely?

Consider:

• inverse-square law explains an enormous array of other data



- clues from residual pattern
- simplicity of hypotheses (Occam's razor): physics may be the *only* class your students are exposed to this!


Resolution: unseen mass

Urbain Le Verrier predicted position and mass of unseen planet in 1846—it was discovered after *one hour* of searching near predicted position.

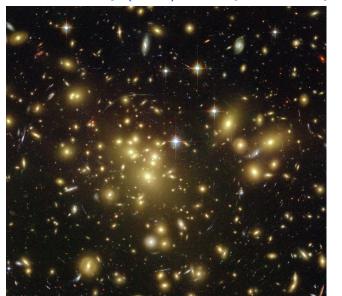
Case study #2: Mercury precesses too much

- "Normal" precession: 0.15°/century
- "Anomalous" precession: 0.012°/century

Hypotheses

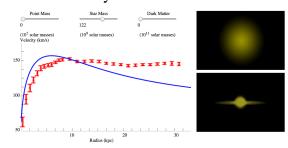
- Unseen matter: unseen planet ("Vulcan") orbiting near Sun
- **Modified gravity:** steeper than inverse-square? Tinker with speed?

Which seems more likely?


Surprise resolution

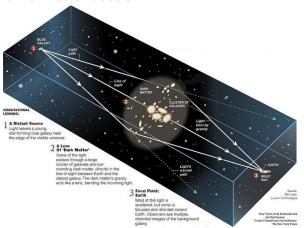
By 1915 general relativity explained the anomalous precession.

What if we found orbital mismatches *everywhere in the universe*?


Zwicky (1935): Galaxy Cluster Dynamics

"Dark Matter" Dynamics: Everywhere You Look

Galaxy Rotation Curve


http://wittman.physics.ucdavis.edu/Animations/RotationCurve/

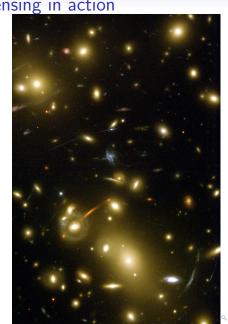
- rotation curves of spiral galaxies
- σ_{v} of elliptical galaxies
- X-rays from galaxy clusters
- galaxy mergers
- structure formation
- cosmic microwave background

Gravitational lensing

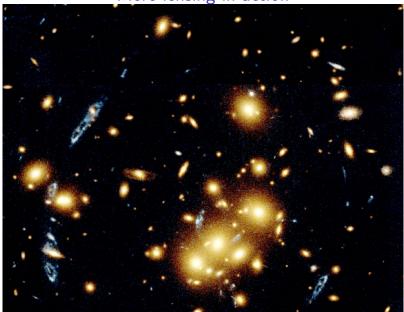
Probes the mass distribution *independent of dynamical state* and *without normal-matter tracers*.

Credit: New York Times

Gravitational lensing analogies

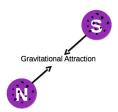


Credit: Melinda Keller, Oberlin College

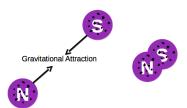

Gravitational lensing in action

NASA/HST

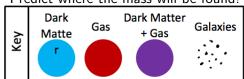
More lensing in action



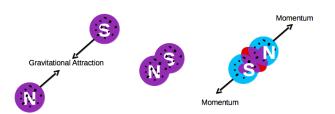
Dark matter or modified gravity?

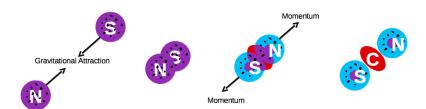

- dark matter is (can be?) an extravagant hypothesis
- but modified gravity struggles to fit so many different environments, e.g. cluster centers vs galaxy outskirts
- → dark matter overwhelmingly favored

Can we prove DM more directly by isolating it from normal matter?



Predict where the mass will be found!




Predict where the mass will be found!

Mergers
•00000000

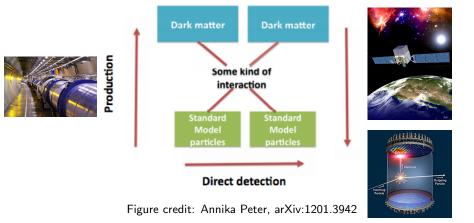
Predict where the mass will be found! Dark Matter + Gas Galaxies Galaxies

Predict where the mass will be found! Dark Matter Gas Haring Galaxies Transport Gas Haring Galaxies

Bullet Cluster

Clowe et al (2006): "A direct empirical proof of the existence of dark matter"

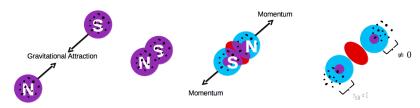
gas (from X-rays); mass (from grav. lensing)


So what is dark matter?

We know what it's not:

- not made of protons or neutrons
- does not interact with light
- ⇒ new particle or particles w/these properties:
 - stable (ish)
 - "cold" (nonrelativistic)
 - collective density $\sim 2 \times 10^{-27} \text{ kg/m}^3$
 - does not interact with SM particles (except perhaps weakly)

Lots of models to test: WIMPs, axions, hidden-sector models....


Unified picture of (most) dark matter searches

But this figure is incomplete...

The drag force awakens

Self-interacting dark matter (SIDM) would transfer momentum in a collision:

Offset in Bullet is consistent with zero $\implies \sigma_{SIDM} \lesssim 2 \text{ barn/GeV}$ (Randall+08)

Wait, 2 barns per GeV??

- $\bullet \sim 10^{20}$ times larger than upper limits on DM interacting with normal matter
- Incredibly, we don't yet know whether DM particles interact with each other at this level
- Some "hidden sector" particle models predict this, and some galaxy data suggest it
- · Only astrophysics can constrain these models!

Can we use clusters as natural colliders to learn more about the DM particle?

Merging cluster collaboration: find/analyze more Bullets!

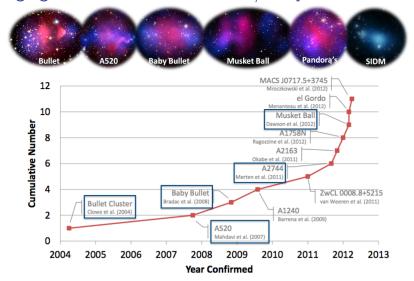
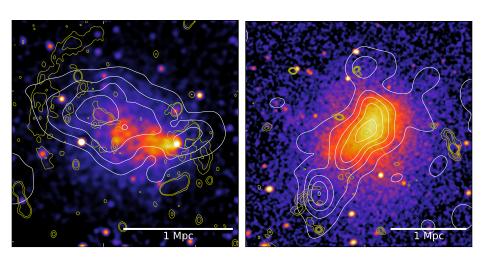



Figure credits: Will Dawson

Two recent MCC discoveries

Merging clusters can probe the type of interaction

(1) Frequent interactions w/small momentum transfer—long range force like F&M

(2) infrequent interactions with large momentum transfer—like hard sphere scattering

Merging clusters can probe the type of interaction

(1) Frequent interactions w/small momentum transfer—long range force like F&M

(2) infrequent interactions with large momentum transfer—like hard sphere scattering

(3) no interaction

Summary

- the Bullet cluster was the first picture of dark matter without its usual camouflage
- nature provides many more!
- these "Large Dark Matter Colliders" will test particle models robustly

Astronomy and physics work together beautifully to reveal unseen aspects of nature.