Damped Oscillations of a Free Piston in a Gas-Filled Cylinder

Carl E. Mungan

Physics Department United States Naval Academy, Annapolis, MD

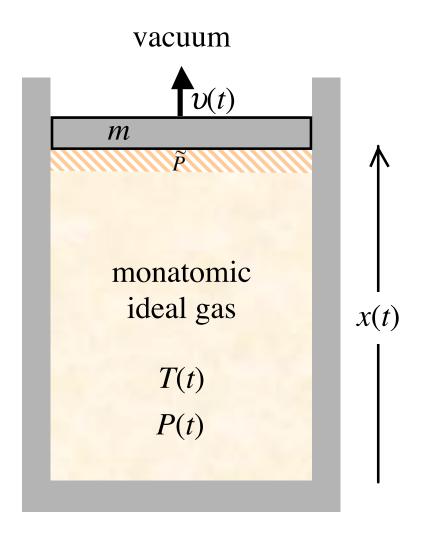
ABSTRACT

If a cylinder is capped off by a sliding piston, we have a situation analogous to a mass on a spring. With suitable idealizations¹ the mass on the spring is undamped and it will oscillate forever if initially displaced from equilibrium. With other suitable idealizations² will the piston similarly oscillate forever if initially displaced? No! Unlike the solid bonds inside a spring, the gas molecules are mobile and so the analog is not exact. In fact, the motion of a piston in a gas-filled cylinder is *always* damped. However, the damping is weak and so the frequency of oscillation in a Rüchardt experiment closely approximates the undamped frequency.

¹The mass hangs vertically in vacuum from a Hookean spring attached to a rigid support.

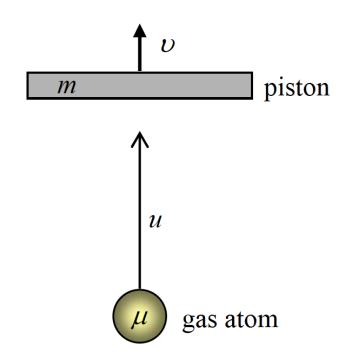
²The piston has no friction with the cylinder; the gas is ideal with no viscosity or turbulence; there is vacuum on the other side of the piston; and the piston and cylinder have zero thermal conductivity and heat capacity.

SETUP



The bulk of the gas has time-varying pressure P, absolute temperature T, and volume V = Ax. However, the gas atoms next to the piston (occupying the hatched slice of negligible volume compared to V) exert dynamic pressure \tilde{P} on the piston.

DYNAMIC PRESSURE



A gas atom of mass μ and upward velocity u makes an elastic collision with the piston of mass m and upward velocity v, where $m \gg \mu$ and $u \gg v$.

kinetic theory
$$\Rightarrow \tilde{P} = P\left(1 - \upsilon \sqrt{\frac{8M}{\pi RT}}\right)$$

R.P. Bauman and H.L. Cockerham, "Pressure of an ideal gas on a moving piston," *Am. J. Phys.* **37**, 675 (1969)

COUPLED EQUATIONS OF MOTION

Newton's second law (N2L) for the piston

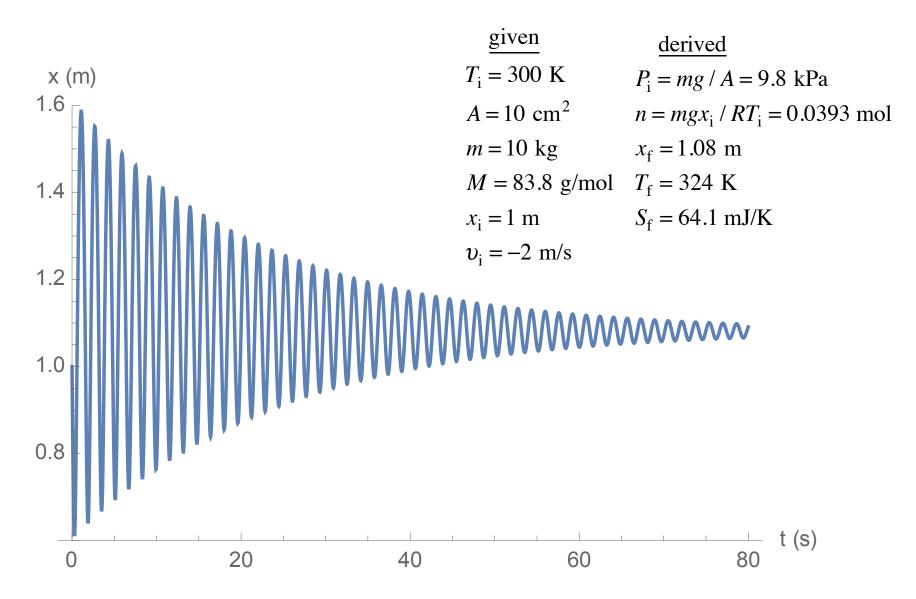
$$\tilde{P}A - mg = ma \implies \frac{d^2x}{dt^2} = \frac{nRT}{mx} \left(1 - \frac{dx}{dt} \sqrt{\frac{8M}{\pi RT}} \right) - g$$

first law of thermodynamics (T1L) for the gas

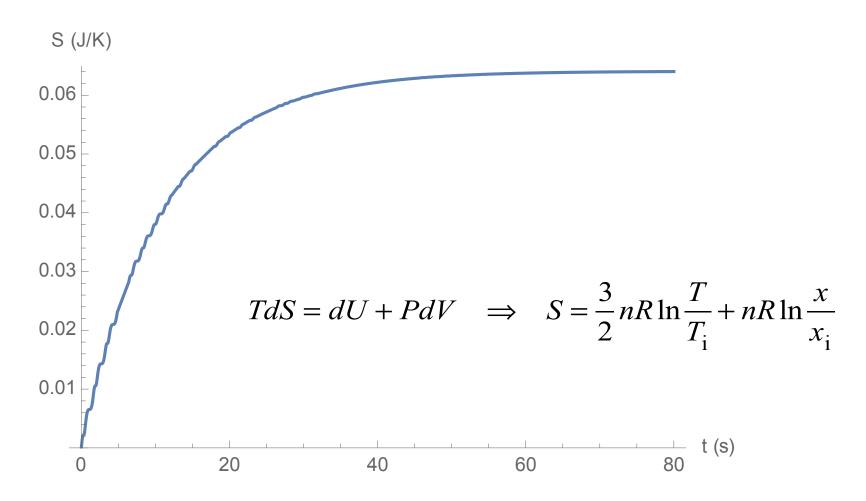
$$-\tilde{P}Adx = \frac{3}{2}nRdT \implies \frac{dT}{dt} = \frac{2T}{3x} \left(\frac{dx}{dt}\sqrt{\frac{8M}{\pi RT}} - 1\right) \frac{dx}{dt}$$

Solve them simultaneously for x(t) and T(t).

NUMERICAL SOLUTION



ENTROPY CHANGE



The increase in *S* confirms that the damping is irreversible.

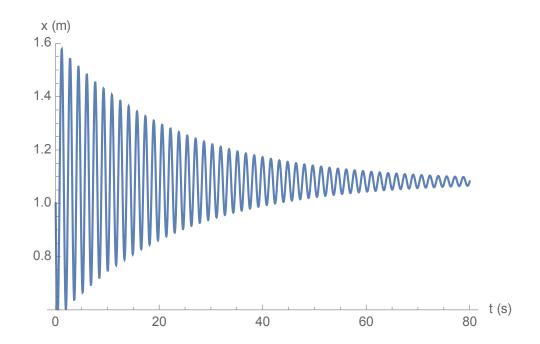
UNDERDAMPED OSCILLATOR MODEL

$$x(t) = x_{\rm f} - Xe^{-bt/2m}\sin(\omega t + \phi)$$

Rüchardt prediction
$$\omega = \sqrt{\frac{\gamma P_f A^2}{mV_f}} = \sqrt{\frac{5nRT_f}{3mx_f^2}} \approx 3.89 \text{ rad/s}$$

damping
$$-b\upsilon = (\tilde{P} - P)A \Rightarrow b = P_{\rm f}A\sqrt{\frac{8M}{\pi RT_{\rm f}}} = \frac{n}{x_{\rm f}}\sqrt{\frac{8MRT_{\rm f}}{\pi}} \approx 0.872 \text{ kg/s}$$

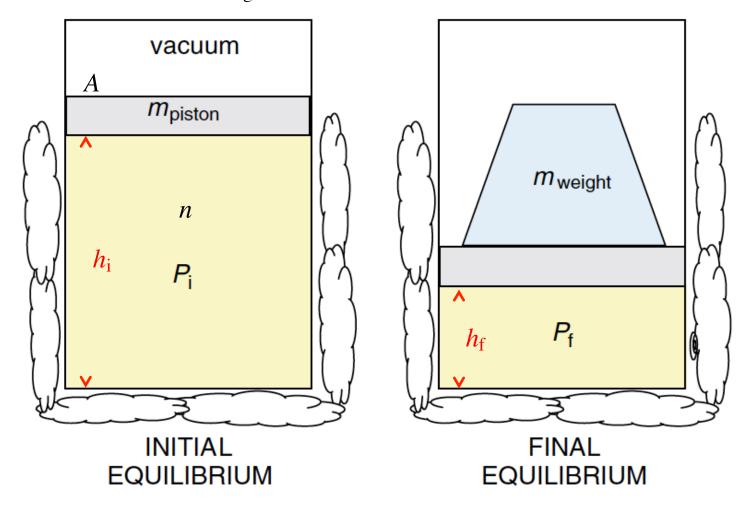
get X = 0.522 m and $\phi = 0.157$ rad from fitting x and dx / dt to x_i and v_i



In excellent agreement with numerical solution of the coupled equations.

FINAL COMPRESSION RATIO

What is $h_{\rm f}$ after the oscillations have died away when $m_{\rm weight}$ is suddenly placed on the piston?



substitute N2L: $P_i A = m_{piston} g$ and $P_f A = (m_{piston} + m_{weight}) g$

into T1L: $\frac{3}{2}P_{i}Ah_{i} + (m_{piston} + m_{weight})gh_{i} = \frac{3}{2}P_{f}Ah_{f} + (m_{piston} + m_{weight})gh_{f}$

to get
$$\frac{h_{\rm f}}{h_{\rm i}} = 1 - \frac{0.6}{1 + m_{\rm piston} / m_{\rm weight}}$$

so that one cannot compress the gas to less than 40% of its initial volume even if the added weight is infinite!

Contrast that with a reversible adiabatic compression described by $P_{\rm i}h_{\rm i}^{5/3} = P_{\rm f}h_{\rm f}^{5/3}$ so that $h_{\rm f} \rightarrow 0$ when the added weight (and hence the final pressure) is infinite.

RELATED PUBLICATIONS

C.E. Mungan, "Damped oscillations of a frictionless piston in an adiabatic cylinder enclosing an ideal gas," European Journal of Physics **38**, 035102 (2017).

- C.E. Mungan, "Entropic damping of the motion of a piston," Physics Teacher **55**, 180 (2017).
- C.E. Mungan, "Irreversible adiabatic compression of an ideal gas," Physics Teacher **41**, 450 (2003).