

Exploring Technology-Enhanced Active Learning in Physics Teacher Education Part 1/2

Marina Milner-Bolotin, Heather Fisher & Alexandra MacDonald

> Sunday, January 5, 2014 AAPT 2014 Orlando, Florida

Modeling Active Engagement in Teacher Education

- What are your reasons for choosing active engagement pedagogies in physics teacher education courses?
- 2. How do you know if these pedagogies are having a positive impact on teachercandidates?
- 3. What is the **role of technology** in this process?

Technology-Enhanced Active Engagement

PeerWise EDCP357 (Winter 1, 2013)

Home | Main menu > Comments written by you

Comments written by you

Comments written by you, about questions you have answered, are shown below.

isgrader The Monty Hall Problem: Let Us Make a Deal A. Stick with the original choice B. Swap doors C. It doesn't matter It doesn't matter

Research-Based Objectives

Investigate the effect of Active Engagement (AE) on teachercandidates' (TCs') epistemologies

Explore a possible mechanism for AE pedagogy Model AE in the context of the course content

Course-Based Objectives

Experience learning science through AE

Value conceptual knowledge

Evaluate/develop resources that match TCs' values Create a long-term connection with UBC community

Math & Science Teaching & Learning through Technology

B	a place of mind +	FACULTY OF EDU DEPARTMENT OF	C A T I O C U R R I	N CULUM AND PEDAGOGY	Math & Science Teaching & Learning through Technology	
HOME ABO	UT - RESEARCH ELEMENTARY	SECONDARY ADD	YOUR PRI	ESENTATION NEWS		
		MATHEMATICS	►	Missio	n Contact Our sponsors	
		PHYSICS	Þ	VECTORS		
Tea	cher Educatio	CHEMISTRY	Þ	KINEMATICS	sion is to design, test, evaluate and disseminate	
		BIOLOGY	Þ	DYNAMICS >>	onal materials for mathematics and science K-12	
+ finme - Resource	I + CREATE Seminara 2012/13	ESU.	MOMENTUM	bms through creating a community of science and ▶ patics educators, researchers and students		
= Resources	Community to Reimagine Educat	E A T E onal Alternatives for Teacher Education	on	WORK,ENERGY,POWER		
* Awards	CREATE is a faculty-wide initiativ	CREATE is a faculty-wide initiative established by Dr. Rita Inwin.			ATH & SCIENCE TEACHING & LEARNING	
Current Students Prospective Stud	Associate Dean of Teacher Education at UBC.	ation programs, to inspire innova	GRAVITATION			
* Faculty and Staff	Fraculty and Staff Seminars are held in Neville Scarfe, Room 310 from 12:30 – 2:00 p.m. CREATE (unless otherwise noted).					
CREATE				WAVE MOTION AND OPTICS		
Presenta On October	ation about MSTLTT Pro	ject	PARTICLE AND NUCLEAR PHYSICS			
seminar to f	faculty and students at UBC Teac	her Education Program	EQUILIBRIUM			
Read More			ELECTROSTATISTICS			

Navigating the Resource

	a place of mi	nd (+)	FACULTY OI DEPARTMEN	EDUCATION	D PEDAGOGY	Math & Science Teaching & Learning through Technology	
HOME ABO	UT - RESEARCH		SECONDARY -	ADD YOUR PRESENTATION	NEWS		
» Home » Secondary » Physics » Dynamics » Forces							

FORCES

Exploration of free body diagrams, two body acceleration, and Newton's law through the system of two blocks attached through a pulley and one of them resting on a table.

acceleration, forces, friction, Newton's laws, pulleys, string tension

rating 常常常常常 (No Ratings Yet)

Exploration of free body diagrams, two body acceleration, and newton's laws through the system of two blocks resting on a pyramid and attached by a pulley.

acceleration. forces. friction. gravitational acceleration, net force, normal force, weight

rating 常常常常常 (No Ratings Yet)

- Mathematics
- Physics
 - » Vectors
 - Kinematics
 - Dynamics
 - » Forces
 - » Springs
 - » Newton's Laws
 - Momentum
 - » Work, Energy, Power
 - » Thermodynamics
 - » Circular Motion
 - » Gravitation
 - » Wave motion and Optics
 - » Particle and Nuclear Physics

Navigating the Resource

rating 常常常常常 (No Ratings Yet)

Cruising Car 60 km/h An introduction to acceleration and newton's laws using a demonstration of a commuting car. <u>acceleration</u>, <u>displacement</u>, <u>distance</u>, <u>forces</u>, <u>net</u> <u>force</u>, <u>velocity</u>

rating 常常常常常 (No Ratings Yet)

How does a reading on a scale change when on a moving elevator? Scenarios with an elevator moving at different velocities and acceleration will be considered. The concepts learned will then be used to analyze data from a real-life experiment. acceleration, gravitational acceleration, mass, net force, normal force, real-life data, velocity, weight

rating 常常常常常 (No Ratings Yet)

The following set of questions apply Newton's Second Law to scenarios with multiple blocks held together by the tension force from strings.

acceleration area centripetal force common ratio conservation of energy conservation of momentum conversion Factors counting current displacement distance elastic collisions forces frames of reference free-body diagrams friction graphs gravitational acceleration gravitational potential energy inelastic collisions kinetic energy molar mass mole net force normal force numbers patterns percentages permutations power probability projectile motion ratios rectangles resistance sequences series tension triangles trigonometry unit circle vectors velocity voltage weight

http://scienceres-edcp-educ.sites.olt.ubc.ca/

Integrating into the Classroom

Instructor modeling AE pedagogy

TCs experience developing questions

Blocks and a Pulley

Blocks and a Pulley II

Two blocks are connected via a pulley. The blocks are initially at rest as block m_1 is attached to a wall. If string A breaks, what will the accelerations of the blocks be? (Assume friction is very small and strings don't stretch)

Solution

Answer: E

Justification: None of the above answers is correct. Consider two blocks as one system: one can see that the system has a mass of (m_1+m_2) , while the net force pulling the system down is m_1g . Therefore, applying Newton's second law, one can see that the acceleration of the system must be less than g:

$$a = \frac{m_2 g}{(m_1 + m_2)} = \frac{m_2}{(m_1 + m_2)} g < g$$

Some people think that the acceleration will be g. They forget that the system consists of two blocks (not just m_1) and the only pulling force is m_1g . Thus the system is NOT in a free fall. Compare this questions to the previous one to see the difference.

Integrating into the Classroom

Instructor modeling AE pedagogy

TCs experience developing questions

Technology-Enhanced Active Engagement Integration

Question	View histogram screen shot
A ball travels through the circular track until point r, at which point it leaves the channel to travel across a frictionless floor. Assume a bird's eye view, and that all motion is in the horizontal plane.	4
Which path will the ball most closely (D) follow after it exits the channel? (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	
	ABCDE

PI modeled in every class

Showing new replies only

No comments to view

Return to main menu

PW used to design, critique, respond to Conceptual Questions as a community of future teachers

Resources

- Beatty, I., Gerace, W., Leonard, W., & Defresne, R. (2006). Designing Effective Questions for Classroom Response System Teaching. *American Journal of Physics*, 74(1), 31–39.
- CWSEI Clicker Resource Guide: An Instructors Guide to the Effective Use of Personal Response Systems (Clickers) in Teaching. (2009, June 1).
- Lasry, Nathaniel. (2008). Clickers or Flashcards: Is There Really a Difference? *The Physics Teacher, 46*(May), 242-244.
- Milner-Bolotin, Marina. (2004). Tips for Using a Peer Response System in the Large Introductory Physics Classroom. *The Physics Teacher, 42*(8), 47-48.
- Mishra, P., & Koehler, M. J. (2007). Technological pedagogical content knowledge (TPCK): Confronting the wicked problems of teaching with technology. In Society for Information Technology & Teacher Education International Conference (Vol. 2007, pp. 2214–2226). Retrieved from http://www.editlib.org/p/24919/