

IB04

Fostering Authentic Communication in an Intermediate Physics Lab Course

February 21, 2017

Muhammad Z. Numan, John L. Bradshaw

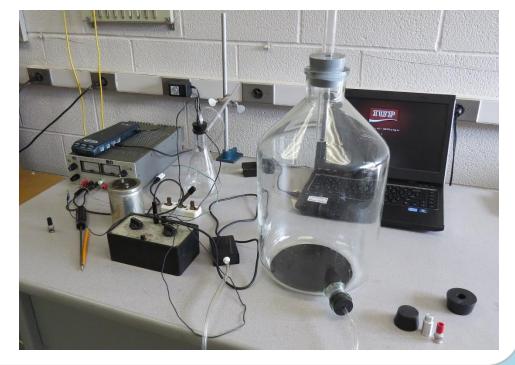
Indiana University of Pennsylvania

Outline

- Overview of Intermediate Labs
- Overview of Grading
- Abstracts
- Set-up and data taking
- Analysis
- Writing*
- Challenges to improve this lab course

<u>Labs</u>

- Millikan Oil Drop Experiment (PASCO) measure electron charge
- **Fraunhofer Diffraction** determination of particle size and hair width
- Measuring the <u>Specific Charge (e/m)</u> of the Electron
- Specific Heat of Gases
 - (a) Ruchardt's Method (C_v) and (b) Rinkel's Methods (C_p/C_v) for air
- Cavendish Balance (TEL-Atomic) determine Universal Gravitational Constant
- The <u>Emission Spectra</u> of Elements measure and analyze hydrogen spectrum; investigate emission spectra of other gaseous elements; measure dispersion of refractive index of a prism
- <u>Monochromator</u> Applications (ORIEL) emission spectra of LEDs & gaseous elements
- <u>Coulomb Balance</u> (PASCO) verification of inverse square law
- Motorized Molecules (J.J. Prentis AJP 68 (12) 2000) experiments in stat mech.



Overview of Grading

- Written Lab Reports* 50% (5 reports, 10% each)
- <u>Abstracts</u> 15%
- <u>Term Paper</u> 20%
- <u>Chalk Talk</u> 15%

* "writing intensive" course as part of a "writing across the curriculum" program

Ruchardt's method to determine Cv Rinkel's Method for Cv/Cp of air

Lab Abstracts

- Part 1: Read the lab material
- Write a Lab Abstract:
 - What is the point of the lab?
 - What are the essential equations / physics involved
 - What are the necessary quantities to measure?
 - How do I go about measuring them?
 - How will I analyze the data to realize the point of the lab?
- How do I know I am taking "good" data?

Experiment Design and Details

- What quantities do you have to measure?
- How do you know it's working?
- Tricks to increase precision and avoid mistakes
- How will you know to stop taking data*?

* "quickie" data analysis to know that the data is giving you what you need

Analysis

- Quickly get to the point (Do I have good data?), then
- Stop and go write, or
- Go back and do better

"Motorized Molecules" Experiment

"Chalk Talks" (one / semester)

- This is an oral communication of the lab to peers
 - What's the point?
 - What are the basic equations?
 - What's the essential data needed?
 - How to check if the data is good enough
- Q & A session after (and during) the talk
 - Experimental pitfalls and work-arounds
 - Traps and Tips for future lab groups

Writing the Lab Report

- **Abstract** What is the point of this experiment ?
- **Background** *To provide context; history only as necessary*
- Theory <u>"Freshman" level equations should be derived</u>
- Procedure Use diagrams and <u>integrate</u> them <u>into</u> the <u>text</u>
- Data use tables and diagrams to improve the presentation and integrate them into text /narrative
- Analysis

graphs, graphical analysis, calculations with <u>integration</u>
<u>into</u> the <u>text / narrative</u>

Error Analysis
Discussion, Summary and Conclusion

Challenges

Successes – "good students"

- good grasp of graphical analyses
- good grasp of error analysis
- modeling details of experiment

Failures – "not as good students..."

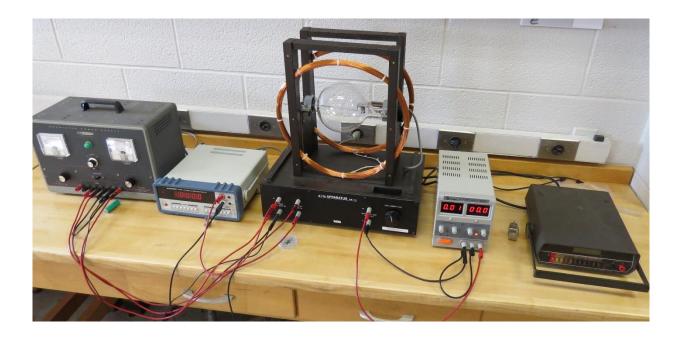
- something goes wrong in the experiment and it is undiscovered until report writing
- poor grasp of graphical analysis
- poor error analysis

Challenges, cont.

<u>To Improve</u> –

<u>Abstracts</u> – <u>we need more critical thinking at the writing</u> <u>the abstract stage</u>

"<u>Chalk talks</u>" – some students were intimidated


- more detailed guidelines requested

– less questioning by instructors requested

Lab Notebooks – need more emphasis on importance of lab notebooks and notebook discipline

Questions and Comments... to help us improve our Intermediate Physics Laboratory

Specific Charge of the Electron Experiment

Additional Labs

- Magnetic field and Hall effect conductivity as a function of temperature
- Velocity of Sound in Gases and Solids
- Four Point Probe Method Temperature Dependence of Resistivity of Semiconductors and Determination of Band-Gap
- <u>Michelson Interferometer</u> index of refraction of liquids and gases