Horace Hearne Jr.

Laboratory for Theoretical Physics
Louisiana State University

-2k W

A brief reminder on general relativity

Jorge Pullin

Horace Hearne Institute
for Theoretical Physics
Louisiana Sate University




*\ tﬂ?s'

WIKIPEDIA
T’ LAk

navigation

5 [lain Page

5 Community Portal

s Featured articles

u Curent events

» Recentchanges

n Random article

n Help

o ContactWikipedia

s Donations

search

tooinax

u \Whatlinks here
® Related changes
u Lploadfile

B Special pages

u Printahle versian
5 Permanentlink

8 Citethis anticle

“A no-nonsense introduction to general relativity” by Sean Carroll
“Lecture notes on general relativity” by Sean Carroll (Grav. waves)

article | | discussion edit this page | | histary

General relativity resources

From Wikipedia, the free enciclopedia

Contents [hide]
1 Books
1.1 Popular
1.2 Tedbooks
1.21 Beginning undergraduate level
1.2.2 Advanced undergraduate level
1.23 Graduate [evel
1.2 4 Special topics
2 External links
2.1 Online tutorials
2.2 Webcourses
2.3 Reading lists

Books

Popular

& Sign in [ create account

Your continued donations keeg Wikipedia unning!

[edit]

[edi]

o Geroch, Rabert {1981) General Relalivity from A fo B. Chicago University of Chicago Press. 15BN 0-226-28364-1. Leisurely pace. provides superb

Intuition for Schwarzschild geometry

o \Wald Robert M (1992) Space, Time. and Gravity. the Theory of the Big Bang and Black Holes. Chicage: University of Chicago Press ISBN (-

226-87029-4. Covers much more ground, while remaining concise and readable.

» Thome, Kip 5. (1995) Black Holes and Time Waips: Einstein's Quirageous Legacy. New York: W. W Norton ISBN 0-393-31276-3. A delightful

romp through the physics of black holes: Features many personal anecdotes from the author's distinguished career

[mdit]

General relativity

Ovenview of GR

n History

i [lathematics

1 Resources

i Tests

Black hele

Einstein equation
Equivalence principle
Event horizon

Exact solutions
FLRW metric
Gravitational lens
Gravitational radiation
Kerr metric

Quantum aravity
Schwarzachild metric

" Singularity

Related topics




~N O O &~ W DN -

Plan:

. Intro

. Special relativity

. Tensors

. Curvature

. General relativity

. Black holes

. Gravitational waves



Intro: GR in a nutshell

= Gravity is not a force anymore.

» Space-time is curved and that curvature accounts for what we normally think of
as “gravitational forces”. More technically, space-time is a pseudo-Riemannian
manifold of signature (-,+,+,+).

» The curvature of space-time is determined by matter via the Einstein equations

1
RPW — §Rgﬁw — 87TGTMV

= Curvature in turn determines the motion of matter.

That's it!!

We’'ll devote the rest of the talk to making sense of these statements...



Special relativity:

The speed of light is the same for all observers. This leads to setting up physics in an
arena in which space and time are described by a vector space called space-time.

It is like any other vector space, but it is four dimensional. We can set up coordinates
on it, and to make things simple one usually chooses units where c=1.

2 =ct =t This vector space has a scalar product. Scalar products are bilinear
forms that act on vectors and produce a number. Concretely,

r =x
4 4
2 __ - ' VvV — HRv
2=y A-B=n,A"B" =), 2 n.,~AB
3 petpL
L= <. And here we are using “Einstein’s summation convention”,

a repeated index implies a summation from 1 to 4.

The matrix n determines the scalar product (usually called “metric”). And in special
relativity turns out to be the “Minkowski metric”.

/ -1 0 0 0 \ The fact that there is a minus sign has
0 1 0 0 some unusual consequences. Notice: the

N — “length” of a vector is not positive definite.

0 0 1 0
\0 0 0 1)




In particular the “distance” between two distinct points can be positive, negative or zero

ds® =

NupdT- AL

—dt* + da® + dy* + dz* .

Some lingo:

A vector whose norm is negative
is called “timelike”. If the norm

IS positive it is called “spacelike”
and if the norm vanishes it is
called “null”.

The minus sign is responsible for the emergence
of a structure in the vector space called “light cones”

timelike

null

spacelike

The scalar product is invariant under Lorentz
transformations, which are linear maps between
the coordinates (akin to the rotations of ordinary
vector calculus).

If we consider the trajectory of a particle that
does not move (spatially) through space-time,
one has ds?=-dt?<0. This leads to define
proper time as dr2=-ds?



Trajectories of particles can be represented as curves parameterized by the proper
time x¥(1). The tangent vector is called four-velocity U¥=dx¥/dt. This vector is
automatically normalized n ,U*UY=-1. A related vector is the four-momentum, defined
by pt=mU¥, with m a number independent of the frame called the “rest mass”. The
zeroth component of the vector is the energy of the particle. In the rest frame,
recalling that we set c=1 we get E=mc?. To get the components of the four
momentum in a frame in which the particle is moving one can apply a Lorentz
transformation to get,

p" = (ym,vym,0,0) ,

where 7 = 1/4/1 — v2. For small v, this gives p’ = m + %m-a;z (what we usually think of
as rest energy plus kinetic energy) and p' = mv (what we usually think of as Newtonian
momentum).

Newton’s second law states that for a particle without forces acting on it,
H 2 1
du -0 or d x2 -0
dr dr

So space-time trajectories are straight lines.



Tensors:

To introduce general relativity we need to allow space-time to curve. In curved
manifolds, Cartesian coordinates lose their special role. The natural thing to use
are “curvilinear” coordinates. Although we all are familiar with particular examples
of curvilinear coordinates, vector calculus in arbitrary coordinates requires a bit of
work.

In usual Cartesian vector calculus one defines as “vector” any set of quantities that
transforms under rotations like the coordinates. In curvilinear coordinates, one
defines as (co)-vectors any set of quantities that transforms like the coordinate
differentials. Vectors are quantities that transform like a gradient,
H U H H
i =B g yr =B yu A0 X 09y, JOC,y
dx* dx* dx*  dx* dx* ooodx#

The scalar product is given as before, as a bilinear function, but now the metric
is not the Minkowski one, but the one of the curved space under consideration.

Ae B = 9, A“BY The metric also defines an isomorphism between vectors and
co-vectors “raising and lowering of indices”

A'=g"A, A =9,A", with g, andg” inversesasmatrices.



A tensor is a multi-indexed object in which each index transforms as if it were in a

vector. 5 y I’ P
9'“" o r €T T 9} .
oove Ot (‘3:1:”’ (;j;’L‘p’ v
In Cartesian coordinates, the derivative of a vector is a tensor, W y = a ,qu

This is due to the fact that rotations (the coordinate transformations of Cartesian
coordinates) are given by matrices that do not depend on the coordinates and
therefore are transparent to the partial derivative. This is not true anymore in
curvilinear coordinates (remember those pages at the end of Jackson?).

In curvilinear coordinates one can construct a tensor with the derivatives of a
vector, but with an additional structure called a “connection”. This structure is
obviously coordinate dependent (it vanishes in Cartesian). The resulting derivative
Is called “covariant derivative”

v, V' =90,V"+ 17, A

So to do vector algebra we need a metric, to do vector calculus we need an
additional structure on the space called a connection. This structure, like the metric
IS ours to choose. In Riemannian geometry, the structure is uniquely fixed by the

metric 1 Christoffel’s formula, which impl
o op{ e ristoffel’s formula, which implies
| Nz =359 f (dp..g.up + d.vgp;.t o dpgp..u) P
2 vag,uu =0, vaguv =0



Curvature:

The presence of a connection is not a telltale sign that one has curved space (it is
coordinate dependent!).

In fact, curvature cannot be characterized locally. One can always at a point choose
coordinates that are locally Cartesian. To see if there is curvature one needs to
“take a walk” around the manifold.

In terms of differential calculus, if one shrinks the circuit to an
infinitesimal one, one still gets a contribution ’
that is proportional to the commutator of
derivatives,

0,0, -0,0,M =R,,* V°

That four-indexed object is called the Riemann (or curvature)
tensor. We can actually evaluate what it is from the formula for

the covariant derivatives. It ends up being a non-linear combination
of the metric and its derivatives up to second.

Tracing this tensor with the metric generates other tensors of relevance, the

Ricci tensor and the curvature scalar.
R = R)I,uv ’ R= R,uvgluv



General relativity:

Now that we have down the math of curved spaces, we can do physics!

We need two things:
a) A law that tells us how matter curves space-time.
b) A law that tells us how curved space-time affects usual physics.

The first of the two laws are the Einstein equations,
1
RW —5 9. R= 8nGTW

The left hand side is a combination of components of the curvature (a second order
differential operator acting on the metric). The right hand side is the “stress-energy”

tensor for matter. For a point particle, T,=mU ﬂU./54(X_ X(7))

These equations determine the metric given the matter just like O°p=47Gp
determines the Newtonian potential ¢ given the matter distribution p.

This analogy can be made precise. If you consider the metric,
ds’ = —(1+2¢)dt* + (1-2¢)dx*

with @<<1 (weak fields), the 00 component of the Einstein equations is precisely:



The law that determines how physics behaves in curved space is called “minimal
coupling” and states:

Take any flat space physics law you like written in tensor notation.

Replace the Minkowski metric wherever it appears by the curved metric.

Replace any partial derivative with covariant derivatives.
That's it!
,7,uv - g,uv

So for instance we stated that Newton’s law could be written

u %
v =0, which wecan writeasdx
dr dr

9,U*=0

So in curved space this would yield: d_XVD U¥=0
dr "’

And it turns out this is the equation of a geodesic, a curve of minimal length
(“the closest thing to a straight line in a curved space”).

If you work out the (spatial part) of the geodesic equation for the metric we discussed
in the previous slide, and you assume slow speeds, you get 424

-
a7




Black holes:

Once one has the equations for a theory of gravitation, the first temptation is to
find the gravitational field of a “particle”. For this one would usually make some
assumptions, like considering the field to be spherically symmetric. One would
conjecture that the metric should look more or less like,

ds® =—=A(r)dt* + B(r)(dr* +r°d@* +r*sin’ 8d¢?)
(usual spheres spatially, radial dependence only). One can redefine r and get,

ds® =—=A(r)dt* + B'(r)dr* +r*d&” +r*sin* 8d¢’

And substituting into the Einstein equations and assuming one is in vacuum
one gets the famous Schwarzschild solution (1916),

ds? = —(1—2?mjdt2 +(1—2Cr5mj dr2 +r2d@” +r2sin? 0dg?

(Note: you don’t really need to assume time independence, it comes out as a
result, this is called Birkhoff's theorem).

When r is large with respect to Gm, this metric coincides with the weak field one
we considered, it therefore reproduces Newton’s orbits.



dszz—(l—zcramjdt%( 2Cr5mj dr®+r°d@° +r’sin” 8d¢

The metric blows up at r=0 and r=2Gm. These points are called singularities.
The singularity at r=0 is unavoidable. The one at r=2Gm is due to a bad choice
of coordinates. Indeed, if one changes to the Kruskal coordinates,

- 1/2
U = ( — 1) e/ 4%m cosh(t /4Gm)

" 1/2
v = ( - 1) " 4%msinh(t /4G'm).
The metric takes the form,

32(Gm)?
r

ds® =

e P (—dv? 4 du®) +r*(d6” + sin® 6d¢?)

And is regular at r=2Gm.



If one considers the geodesic equation for 6=172, one gets an effective one
dimensional problem, just like for the Newtonian two-body problem,

2 2 2
1(&) v lp 1 Gm  LI* Gml?

2

dr

5 Vir)=—- —

2 r U 22 7o

Where L is the angular momentum per unit mass of the orbiting particle.

The first three terms in the potential are the same as in Newton'’s theory.

The last term is a new GR contribution. That contribution is responsible for things
in the weak field regime as the precession of the perihelion of Mercury.

But it also implies that for r->0, the potential goes to minus infinity, unlike in
Newton’s theory. That is, if you get too close to r=0, you can’t escape. This is
the first manifestation of a black hole.

Recall this is an “exterior” solution, it is not valid, say, within a star. For most
astronomical objects, the solution stops being valid long before you “cant’ escape”.
Black holes are objects so dense that the “no escape” region is accessible.

The point of no return is given at r=2Gm.



Another view of the issue is to consider the space-time in the Kruskal coordinates
and see how they relate to more ordinary coordinates,

r=2GM r—ZGM

t=-00 t = too

//% .

t = const

X
PN

r = const ==

r=2GM r=1 r=2GM
t =400 t=-00

MO




Gravitational waves:

In Newton’s theory of gravitation changes in the sources imply instantaneous
changes in the gravitational field. This is incompatible with special relativity.

In general relativity, we can get a feel for dynamical gravitational fields relatively
easily if we assume the fields are weak. We will therefore consider metrics such
that they are the Minkowski metric plus a small perturbation,

G = Nuw + Py |hu| << 1.
If one places such metric into the Einstein eauations and keeps terms
only up to linear order in h, one gets, IIIEW — _167GT,, ,
_ 1 _
where h/;,w — hp,u — §nuuh . and 'Quhﬂ =0

The latter condition is analogous to the “Lorenz gauge” in electromagnetism,
in GR it corresponds to a choice of coordinates.

So indeed we see that we get a wave equation for the metric perturbations!



Since the main equation is a wave equation, we of course know how to solve it
(e.g. use Green’s functions),

_ 1 3
st X) = 4G [ =Tt = Ix = y],y) &'y

And we see that propagation is not instantaneous, it travels at the speed of light.

What about intensity? Here we can follow a calculation totally similar to the one
that is done in Maxwell's theory. The only caveat are the presence of the tensor
indices. We will see they have a consequence.

One starts by assuming one has a small, far away source. Then one has
x>>y and the 1/|x-y| piece can be pulled out of the integral, the y dependence
in the first entry in T ignored. One then does a couple of integrations by parts
and the final result is,

(6 = 289A0)

R=[x-yl, t=t-[x-y|

g, 1) =3y yT"( y)d’y



Final notes

Gravity I1s now described by a deformation of
geometry.

How the geometry is deformed is given by the
Einstein equations.

Solutions of the equations describe well the

P
P
T

nysics of weak fields and predict new
nenomena for strong fields.

ne eguations have wave-like solutions like

those of Maxwell theory, but the lowest
contribution is quadrupolar.



