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The Lorentz transformations at the heart of special relativity are

just hyperbolic rotations. Special relativity itself can therefore be

beautifully described in terms of “hyperbola geometry”.

HYPERBOLA GEOMETRY

Euclidean distance is based on the unit circle, the set of points which
are unit distance from the origin. Hyperbola geometry is obtained
simply by using a different distance function! Measure the “squared
distance” of a point B = (x, y) from the origin using the definition

δ2 = x2 − y2

Then, as shown below the unit “circle” becomes the unit hyperbola

x2 − y2 = 1

and we further restrict ourselves to the branch with x > 0. If B is a
point on this hyperbola, then we can define the hyperbolic angle β
between the line from the origin to B and the (positive) x-axis to be
the Lorentzian length dσ of the arc of the unit hyperbola between B
and the point (1, 0), where dσ2 =

∣

∣dx2 − dy2
∣

∣. We could then define

the hyperbolic trig functions to be the coordinates (x, y) of B, that
is

cosh β = x

sinh β = y

and by symmetry, the point A on this hyperbola has coordinates
(x, y) = (sinh β, cosh β); see the figure below. A little work shows
that this definition is exactly the same as the standard one, namely

cosh β =
eβ + e−β

2

sinh β =
eβ − e−β

2

To see this, use x2 − y2 = 1 to compute

dβ2 ≡ dσ2 =
∣

∣

∣
dy2 − dx2

∣

∣

∣
=

dx2

x2 − 1
=

dy2

y2 + 1

then take the square root of either expression and integrate. (The
integrals are hard.) Finally, solve for x or y in terms of β.
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TRIANGLE TRIG
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We now recast ordinary triangle trig into hyperbola geometry.
Suppose you know tanh β = 3

5, and you wish to determine cosh β.
One can of course do this algebraically, using the identity

cosh2 β =
1

1 − tanh2 β

But it is easier to draw any triangle containing an angle whose hy-
perbolic tangent is 3

5. In this case, the obvious choice would be the
triangle shown above, with sides of 3 and 5.
What is cosh β? Well, we first need to work out the length δ of the
hypotenuse. The (hyperbolic) Pythagorean Theorem tells us that

52 − 32 = δ2

so δ is clearly 4. Take a good look at this 3-4-5 triangle of hyperbola
geometry! Now that we know all the sides of the triangle, it is easy
to see that cosh β = 5

4.

LORENTZ TRANSFORMATIONS

The Lorentz transformation from a moving frame (x′, ct′) to a frame
(x, ct) at rest is given by

x = γ (x′ +
v

c
ct′)

ct = γ
(

ct′ +
v

c
x′
)

We can simplify things still further. Introduce the rapidity β via

v

c
= tanh β

Inserting this into the expression for γ we obtain

γ =
1

√

1 − tanh2 β
=

√

cosh2 β

cosh2 β − sinh2 β
= cosh β

and

v

c
γ = tanh β cosh β = sinh β

Inserting these identities into the Lorentz transformations above
brings them to the remarkably simple form

(

x

ct

)

=

(

cosh β sinh β

sinh β cosh β

)(

x′

ct′

)

Lorentz transformations are just hyperbolic rotations!

LENGTH CONTRACTION
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Consider first a meter stick at rest, as shown in the first sketch above.
How “wide” is the worldsheet of the stick? The observer at rest of
course measures the length of the stick by locating both ends at the

same time, and measuring the distance between them. At t = 0, this
corresponds to the 2 heavy dots in the sketch, one at the origin and
the other on the unit hyperbola. But all points on the unit hyperbola
are at an interval of 1 meter from the origin. The observer at rest
therefore concludes, unsurprisingly, that the meter stick is 1 meter
long.
How long does a moving observer think the stick is? This is just
the “width” of the worldsheet as measured by the moving observer.
This observer follows the same procedure, by locating both ends of the
stick at the same time, and measuring the distance between them.
But time now corresponds to t′, not t. At t′ = 0, this measurement
corresponds to the heavy line in the sketch. Since this line fails to
reach the unit hyperbola, it is clear that the moving observer measures
the length of a stationary meter stick to be less than 1 meter.
To determine the exact value measured by the moving observer, use
(hyperbolic) triangle trig. The heavy line in the sketch is the hy-
potenuse of a right triangle, whose horizontal leg measures 1 meter.
If the observer is moving with speed v

c = tanh β, then the length of
the hypotenuse in meters must be 1/ cosh β.
What if the stick is moving and the observer is at rest? This situation
is shown in the second sketch above. The worldsheet now corresponds
to a “rotated rectangle”, indicated by the parallelograms in the sketch.
The fact that the meter stick is 1 meter long in the moving frame is
shown by the distance between the 2 heavy dots (along t′ = 0), and
the measurement by the observer at rest is indicated by the heavy line
(along t = 0). Again, it is clear that the stick appears to have shrunk,
since the heavy line fails to reach the unit hyperbola. Furthermore,
the heavy line is again the hypotenuse of a right triangle (!), whose
spacelike leg again measures 1 meter.
Thus, a moving object appears shorter by a factor 1/ cosh β.

TIME DILATION
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Using hyperbolic triangle trig, it is straightforward to show that mov-
ing clocks run slow by the same factor as before, namely cosh β. Can
you find the necessary right triangles for both cases in the figure?

COSMIC RAYS

Consider µ-mesons produced by the collision of cosmic rays with

gas nuclei in the atmosphere 60 kilometers above the surface of

the earth, which then move vertically downward at nearly the

speed of light. The half-life before µ-mesons decay into other par-

ticles is 1.5 microseconds. Assuming it doesn’t decay, how long

would it take a µ-meson to reach the surface of the earth? As-

suming there were no time dilation, approximately what fraction

of the mesons would reach the earth without decaying? In actual

fact, roughly an eighth of the mesons would reach the earth! How

fast are they going?
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Assume the mesons travel at the speed of light. Then it takes them

60 km

3 × 108 m
s

= 200 µs

to reach the earth. But 200 µs is
200

1.5
=

400

3
half-lives, so only 2−

400
3

of the mesons would reach the earth!
Since in fact an eighth reach the earth, which corresponds to 3 half-

lives, time must be dilated by a factor of
400/3

3 , so that

cosh α =
400

9

But, as shown in the first drawing above,

v

c
= tanh α =

√
4002 − 92

400
≈ .99974684

A more accurate argument would use the fact that the mesons travel
60 km in 4.5 µs (of proper time). Thus,

sinh α =
(60 km)(1000 m

km
)

(4.5 × 10−6 s)(3 × 108 m
s )

=
400

9

so that, as shown in the second drawing above,

v

c
= tanh α =

400
√

4002 + 92
≈ .99974697

DOPPLER EFFECT
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A rocket sends out flashes of light every 2 seconds in its own rest

frame, which you receive every 4 seconds. How fast is it going?

Draw a horizontal line as shown in the enlarged second drawing, so
that

tanh α =
x

4 − x
(4 − x)2 − x2 = 22

which is easily solved for x = 3
2, so that v

c = tanh α = 3
5.
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