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Important Instructions for the Exam Supervisor

• This examination consists of two parts.

• Part A has four questions and is allowed 90 minutes.

• Part B has two questions and is allowed 90 minutes.

• The first page that follows is a cover sheet. Examinees may keep the cover sheet for both
parts of the exam.

• The parts are then identified by the center header on each page. Examinees are only allowed
to do one part at a time, and may not work on other parts, even if they have time remaining.

• Allow 90 minutes to complete Part A. Do not let students look at Part B. Collect the answers
to Part A before allowing the examinee to begin Part B. Examinees are allowed a 10 to 15
minutes break between parts A and B.

• Allow 90 minutes to complete Part B. Do not let students go back to Part A.

• Ideally the test supervisor will divide the question paper into 3 parts: the cover sheet (page
2), Part A (pages 3-4), and Part B (pages 6-7). Examinees should be provided parts A and
B individually, although they may keep the cover sheet.

• The supervisor must collect all examination questions, including the cover sheet, at the end
of the exam, as well as any scratch paper used by the examinees. Examinees may not take
the exam questions. The examination questions may be returned to the students after March
31, 2011.

• Examinees are allowed calculators, but they may not use symbolic math, programming, or
graphic features of these calculators. Calculators may not be shared and their memory must
be cleared of data and programs. Cell phones, PDA’s or cameras may not be used during
the exam or while the exam papers are present. Examinees may not use any tables, books,
or collections of formulas.

• Please provide the examinees with graph paper for Part A.
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AAPT UNITED   STATES   PHYSICS   TEAM
AIP 2011

Semifinal Exam

INSTRUCTIONS

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN

• Work Part A first. You have 90 minutes to complete all four problems. Each question is
worth 25 points. Do not look at Part B during this time.

• After you have completed Part A you may take a break.

• Then work Part B. You have 90 minutes to complete both problems. Each question is worth
50 points. Do not look at Part A during this time.

• Show all your work. Partial credit will be given. Do not write on the back of any page. Do
not write anything that you wish graded on the question sheets.

• Start each question on a new sheet of paper. Put your AAPT ID number, your name, the
question number and the page number/total pages for this problem, in the upper right hand
corner of each page. For example,

AAPT ID #

Doe, Jamie

A1 - 1/3

• A hand-held calculator may be used. Its memory must be cleared of data and programs. You
may use only the basic functions found on a simple scientific calculator. Calculators may not
be shared. Cell phones, PDA’s or cameras may not be used during the exam or while the
exam papers are present. You may not use any tables, books, or collections of formulas.

• Questions with the same point value are not necessarily of the same difficulty.

• In order to maintain exam security, do not communicate any information about
the questions (or their answers/solutions) on this contest until after April 1, 2011.

Possibly Useful Information. You may use this sheet for both parts of the exam.
g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πε0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A
c = 3.00× 108 m/s kB = 1.38× 10−23 J/K
NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)
σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C
1eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s
me = 9.109× 10−31 kg = 0.511 MeV/c2 (1 + x)n ≈ 1 + nx for |x| � 1
sin θ ≈ θ − 1

6θ3 for |θ| � 1 cos θ ≈ 1− 1
2θ2 for |θ| � 1
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Part A

Question A1

Single bubble sonoluminescence occurs when sound waves cause a bubble suspended in a fluid
to collapse so that the gas trapped inside increases in temperature enough to emit light. The
bubble actually undergoes a series of expansions and collapses caused by the sound wave pressure
variations.

We now consider a simplified model of a bubble undergoing sonoluminescence. Assume the bub-
ble is originally at atmospheric pressure P0 = 101 kPa. When the pressure in the fluid surrounding
the bubble is decreased, the bubble expands isothermally to a radius of 36.0 µm. When the pressure
increases again, the bubble collapses to a radius of 4.50 µm so quickly that no heat can escape.
Between the collapse and subsequent expansion, the bubble undergoes isochoric (constant volume)
cooling back to its original pressure and temperature. For a bubble containing a monatomic gas,
suspended in water of T = 293 K, find

a. the number of moles of gas in the bubble,

b. the pressure after the expansion,

c. the pressure after collapse,

d. the temperature after the collapse, and

e. the total work done on the bubble during the whole process.

You may find the following useful: the specific heat capacity at constant volume is CV = 3R/2
and the ratio of specific heat at constant pressure to constant volume is γ = 5/3 for a monatomic
gas.

Solution

We consider the bubble to be filled with an ideal monatomic gas, so originally: P0V0 = nRT0.
The bubble undergoes 3 processes: 1) isothermal expansion, 2) adiabatic collapse (no heat

escapes), and 3) isochoric (constant volume) cooling. The final process is isochoric, so we know
that the bubble’s collapsed volume is equal to its original volume, so

V2 = V0,

and
P0V0 = P0V2 = nRT0.

Rearranging,

n =
P0V2

RT0

n =
P0

4
3πr3

2

RT0

n =
101, 000 N

m2 · 4
3π · (4.50× 10−6 m)3

8.31 J
mol·K · 293 K

=
3.86× 10−11

2430
moles
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a) n = 1.58× 10−14 moles.

Process 1: Isothermal expansion
This process is isothermal, so T1 = T0 and

P1V1 = nRT1 = nRT0

P1 =
nRT0

V1
=

1.58× 10−14 moles · 8.31 J
mol·K · 293 K

4
3π · (3.60× 10−5 m)3

b) P1 = 197 N
m2 = 197 Pa.

The work done by the bubble is:

W1 = nRT0 ln
V1

V0

W1 = 1.58× 10−14 moles · 8.31
J

mol·K
· 293 K · ln

(
(3.60× 10−5)3

(4.50× 10−6)3

)
W1 = 2.40× 10−10 J

So, the work done on the bubble during the expansion is:

W1 = −2.40× 10−10 J.

Process 2: Adiabatic collapse
For an adiabatic process

P1V
γ
1 = P2V

γ
2

P2 =
P1V

γ
1

V γ
2

For a monatomic gas γ = 5/3 so,

P2 =
197 N

m2 · (3.60× 10−5 m)5

(4.50× 10−6 m)5

c) P2 = 6.46× 106 Pa.

And
T2 =

P2V2

nR

T2 =
6.46× 106 Pa · 4

3π · (4.50× 10−6 m)3

1.58× 10−14 moles · 8.31 J
mol·K

d) T2 = 18800 K. Lord, have mercy! That’s hot!

The work done by the bubble during an adiabatic process is

W2 = −∆Einternal = −nCv∆T
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where Cv = 3R/2.

W2 = −1.58× 10−14 moles ·
(

3
2

)
8.31

J
mol·K

· (18800− 293) K

W2 = −3.64× 10−9 J

The work done on the bubble is then

W2 = 3.64× 10−9 J

Process 3: Isochoric cooling
The work done on the bubble during an isochoric process is zero, so W3 = 0 J.
The total work is then the sum of the work on the bubble

Wtotal = W1 + W2 + W3

Wtotal = −2.40× 10−10 J + 3.64× 10−9 J + 0 J

e) Wtotal = 3.4× 10−9 J.

Question A2

A thin, uniform rod of length L and mass M = 0.258 kg is suspended from a point a distance R
away from its center of mass. When the end of the rod is displaced slightly and released it executes
simple harmonic oscillation. The period, T , of the oscillation is timed using an electronic timer.
The following data is recorded for the period as a function of R. What is the local value of g? Do
not assume it is the canonical value of 9.8 m/s2. What is the length, L, of the rod? No estimation
of error in either value is required. The moment of inertia of a rod about its center of mass is
(1/12)ML2.

R T
(m) (s)

0.050 3.842
0.075 3.164
0.102 2.747
0.156 2.301
0.198 2.115

R T
(m) (s)

0.211 2.074
0.302 1.905
0.387 1.855
0.451 1.853
0.588 1.900

You must show your work to obtain full credit. If you use graphical techniques then you must
plot the graph; if you use linear regression techniques then you must show all of the formulae and
associated workings used to obtain your result.

Solution

The period of a physical pendulum is given by

T = 2π

√
I

mgR
= 2π

√
1
12L2 + R2

gR
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A little math, and

g
T 2R

4π2
− 1

12
L2 = R2.

This is of the form
mx + b = y

if we let
y = R2

and

x =
T 2R

4π2

Filling out a table of data, we get

R T T 2R/4π2 R2

0.050 3.842 0.0187 0.0025
0.075 3.164 0.0190 0.0056
0.102 2.747 0.0195 0.0104
0.156 2.301 0.0209 0.0243
0.198 2.115 0.0224 0.0392
0.211 2.074 0.0230 0.0445
0.302 1.905 0.0278 0.0912
0.387 1.855 0.0337 0.1498
0.451 1.853 0.0392 0.2034
0.588 1.900 0.0538 0.3457

The corresponding graph of

T 2/R/4π2 versus R2 ought yield a straight line such that the slope is g and the intercept is − 1
12L2.

g = 9.7923 m/s2

and
L = 1.470 m
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Question A3

A light bulb has a solid cylindrical filament of length L and radius a, and consumes power P .
You are to design a new light bulb, using a cylindrical filament of the same material, operating at
the same voltage, and emitting the same spectrum of light, which will consume power nP . What
are the length and radius of the new filament? Assume that the temperature of the filament is
approximately uniform across its cross-section; the filament doesn’t emit light from the ends; and
energy loss due to convection is minimal.

Solution

Since the new bulb emits the same spectrum of light, the emitted power is simply proportional
to the area:

P ∝ 2πaL

P ∝ aL

If the resistivity of the filament is ρ, the resistance is

R =
ρL

A
=

ρL

πa2

and therefore the power is also given by

P =
V 2

R
=

V 2πa2

ρL

P ∝ a2

L

Combining our conditions,
a ∝ P 2/3

L ∝ P 1/3

So the new filament must have length n2/3a and length n1/3L.

Question A4

In this problem we consider a simplified model of the electromagnetic radiation inside a cubical
box of side length L. In this model, the electric field has spatial dependence

E(x, y, z) = E0 sin(kxx) sin(kyy) sin(kzz)

where one corner of the box lies at the origin and the box is aligned with the x, y, and z axes. Let
h be Planck’s constant, kB be Boltzmann’s constant, and c be the speed of light.

a. The electric field must be zero everywhere at the sides of the box. What condition does this
impose on kx, ky, and kz? (Assume that any of these may be negative, and include cases
where one or more of the ki is zero, even though this causes E to be zero.)

b. In the model, each permitted value of the triple (kx, ky, kz) corresponds to a quantum state.
These states can be visualized in a state space, which is a notional three-dimensional space
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with axes corresponding to kx, ky, and kz. How many states occupy a volume s of state space,
if s is large enough that the discreteness of the states can be ignored?

c. Each quantum state, in turn, may be occupied by photons with frequency ω = f
2π = c|k|,

where
|k| =

√
kx

2 + ky
2 + kz

2

In the model, if the temperature inside the box is T , no photon may have energy greater than
kBT . What is the shape of the region in state space corresponding to occupied states?

d. As a final approximation, assume that each occupied state contains exactly one photon. What
is the total energy of the photons in the box, in terms of h, kB, c, T , and the volume of the box
V ? Again, assume that the temperature is high enough that there are a very large number of
occupied states. (Hint : divide state space into thin regions corresponding to photons of the
same energy.)

Note that while many details of this model are extremely inaccurate, the final result is correct
except for a numerical factor.

Solution

a. We require that sin(kxL) = 0, so that

kxL = nxπ

for any integer nx, and similarly for ky and kz.

b. The occupied states are equally spaced a distance π
L apart. Each can therefore be thought of

as taking up volume π3

L3 , and the number of states in the volume s is

L3

π3
s

c. A photon’s energy is E = h̄ω = h̄c|k|, where h̄ = h
2π . Thus the occupied states obey

h̄c|k| ≤ kBT

|k| ≤ kBT

h̄c

This corresponds to a ball of radius kBT
h̄c in state space.

d. As we have seen, the energy of a photon is proportional to its distance |k| from the origin
in state space. Thus consider the spherical shell in state space between radius k and radius
k + dk. The volume of this region is

ds = 4πk2dk

Each photon in the region has energy h̄ck, and from above there are L3

π3 ds photons in the
region. Therefore the photons in the region have total energy

dE = h̄ck · L3

π3
· 4πk2dk
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dE =
4
π2

h̄cL3k3 dk

From above, k ranges from zero to kmax = kBT
h̄c , so the total energy is

E =
∫ kmax

0

4
π2

h̄cL3k3 dk

E =
4
π2

h̄cL3 · 1
4

(
kBT

h̄c

)4

Since the volume of the box is V = L3, and h = 2πh̄, this cleans up to

E =
8πkB

4

h3c3
T 4V
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STOP: Do Not Continue to Part B

If there is still time remaining for Part A, you should review your work for
Part A, but do not continue to Part B until instructed by your exam

supervisor.
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Part B

Question B1

An AC power line cable transmits electrical power using a sinusoidal waveform with frequency
60 Hz. The load receives an RMS voltage of 500 kV and requires 1000 MW of average power.
For this problem, consider only the cable carrying current in one of the two directions, and ignore
effects due to capacitance or inductance between the cable and with the ground.

a. Suppose that the load on the power line cable is a residential area that behaves like a pure
resistor.

i. What is the RMS current carried in the cable?

ii. The cable has diameter 3 cm, is 500 km long, and is made of aluminum with resistivity
2.8× 10−8 Ω ·m. How much power is lost in the wire?

b. A local rancher thinks he might be able to extract electrical power from the cable using
electromagnetic induction. The rancher constructs a rectangular loop of length a and width
b < a, consisting of N turns of wire. One edge of the loop is to be placed on the ground; the
wire is straight and runs parallel to the ground at a height h much less than the length of the
wire. Write the current in the wire as I = I0 sinωt, and assume the return wire is far away.

i. Determine an expression for the magnitude of the magnetic field at a distance r from
the power line cable in terms of I, r, and fundamental constants.

ii. Where should the loop be placed, and how should it be oriented, to maximize the induced
emf in the loop?

iii. Assuming the loop is placed in this way, determine an expression for the emf induced
in the loop (as a function of time) in terms of any or all of I0, h, a, b, N , ω, t, and
fundamental constants.

iv. Suppose that a = 5 m, b = 2 m, and h = 100 m. How many turns of wire N does the
rancher need to generate an RMS emf of 120 V?

c. The load at the end of the power line cable changes to include a manufacturing plant with
a large number of electric motors. While the average power consumed remains the same, it
now behaves like a resistor in parallel with a 0.25 H inductor.

i. Does the power lost in the power line cable increase, decrease, or stay the same? (You
need not calculate the new value explicitly, but you should show some work to defend
your answer.)

ii. The power company wishes to make the load behave as it originally did by installing a
capacitor in parallel with the load. What should be its capacitance?

Solution

a. i. Because the load is purely resistive, the average power is simply

Pav = VrmsIrms
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so
Irms =

Pav

Vrms
= 2000 A

ii. The cross-sectional area of the wire is A = πr2 = 7.07× 10−4 m2, so its resistance is

R =
ρL

A
= 19.8 Ω

The power loss is then
P = I2R = 79.2 MW

b. i. The field is perpendicular to the wire and to the radius, and from Ampere’s Law∮
B · ds = µ0Iencl

B · 2πr = µ0I

B =
µ0I

2πr

ii. The induced emf is proportional to the rate of change of the flux through the loop. Since
the time dependence of the magnetic field is uniform across space, the rate of change of
flux is maximized by maximizing the flux itself. This in turn can be accomplished by
maximizing the field in the loop and ensuring that it is normal to the loop. Because
the field gets stronger closer to the wire, the loop should be directly below the wire,
and since the field is horizontal and perpendicular to the wire at this location, the loop
should be vertical and parallel to the wire. Finally, again because the field gets stronger
closer to the wire, the long edge of the loop should be vertical.
In summary, the loop should be placed vertically, parallel to the wire and directly beneath
it, with the long edge vertical.

iii. From Faraday’s law,

E = N
d

dt
ΦB

where we have dropped the sign and ΦB is the magnetic flux through a single loop. The
flux, in turn, is defined as

ΦB =
∫

B · dA

Dividing the loop into strips of radial width dr and length b,

ΦB =
∫ h

h−a
B(r)b dr

ΦB =
∫ h

h−a

µ0I

2πr
b dr

ΦB =
µ0Ib

2π
ln

h

h− a

So,

E = N
d

dt

µ0Ib

2π
ln

h

h− a
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Since the loop is stationary, only I depends on t, and

E = N
µ0b

2π
ln

h

h− a

dI

dt

E = N
µ0b

2π
ln

h

h− a
I0ω cos ωt

iv. Note that the RMS value of I0 cos ωt is the same as the RMS value of I0 sinωt, i.e. Irms.
So, taking the RMS value of both sides of our previous result,

Erms = N
µ0b

2π
ln

h

h− a
ωIrms

And (conveniently) the frequency f = ω
2π , so

Erms = Nµ0bf ln
h

h− a
Irms

With the given numbers,

µ0bf ln
h

h− a
Irms = 0.0155 V

so that the required number of turns is

N = 7757

c. i. The inductor adds a new component of the current in the wire out of phase with the
voltage; this component does not transmit power, so the in-phase component must re-
main unchanged. The total current is thus increased, and with it the power lost in the
wire increases as well.

ii. The resonant frequency of an LC circuit is given by

ω =
1√
LC

so that
C =

1
ω2L

Here ω = 2πf = 377 s−1, so
C = 28.1 µF
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Question B2

A particle is constrained to move on the inner surface of a frictionless parabolic bowl whose cross-
section has equation z = kr2. The particle begins at a height z0 above the bottom of the bowl with
a horizontal velocity v0 along the surface of the bowl. The acceleration due to gravity is g.

r

z

z = kr2

a. For a particular value of horizontal velocity v0, which we will name vh, the particle moves in
a horizontal circle. What is vh in terms of g, z0, and/or k?

b. Suppose that the initial horizontal velocity is now v0 > vh. What is the maximum height
reached by the particle, in terms of v0, z0, g and/or k?

c. Suppose that the particle now begins at a height z0 above the bottom of the bowl with an
initial velocity v0 = 0.

i. Assuming that z0 is small enough so that the motion can be approximated as simple
harmonic, find the period of the motion in terms any or all of the mass of the particle
m, g, z0, and/or k.

ii. Assuming that z0 is not small, will the actual period of motion be greater than, less
than, or equal to your simple harmonic approximation above? (You need not calculate
the new value explicitly, but you should show some work to defend your answer.)

Solution

a. Let the particle have mass m, let the radius of the bowl at height z0 be r0, and let the angle
made by the bowl’s surface to the horizontal at that height be θ.

Two forces act on the particle: the normal force and gravity. If the particle moves in a
horizontal circle the horizontal component of the net force must equal the centripetal force
Fc = mvh

2

r0
, whereas the vertical component must be zero. From the free body diagram

[Diagram], these conditions are

FN sin θ =
mvh

2

r0

FN cos θ −mg = 0

Combining these,

tan θ =
vh

2

gr0
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However, tan θ is simply the slope of the bowl dz
dr = 2kr0, so that

2ar0 =
vh

2

gr0

Using the fact that z0 = kr0
2,

vh =
√

2gz0

b. Let the maximum height be z, let the radius of the bowl at this point be r, and let the speed
of the particle at this point be v. From conservation of energy,

1
2
mv0

2 + mgz0 =
1
2
mv2 + mgz

Meanwhile, the two forces acting on the particle never exert a torque in the direction of the
bowl’s axis, and so angular momentum about this axis is conserved. Furthermore, at the
point of maximum height the velocity of the particle is entirely tangential to the axis, so the
conservation condition is simply

mv0r0 = mvr

v = v0
r0

r

or, since z = kr2 and z0 = kr0
2,

v = v0

√
z0

z

Combining our results,
1
2
mv0

2 + mgz0 =
1
2
mv0

2 z0

z
+ mgz

z2 −
(

v0
2

2g
+ z0

)
z +

v0
2

2g
z0 = 0

(z − z0)
(

z − v0
2

2g

)
= 0

The root z = z0 corresponds to our starting condition, so the desired root is

z =
v0

2

2g

Note that we recover z = z0 if v0 = vh as we would expect; indeed, the analysis in this section
is an alternative path to the previous result.

c. i. We present a force-based approach and an energy-based approach. In each case, let r
be the radial position of the particle, so that z = kr2 is the height of the particle above
the bottom of the bowl.
The force-based approach begins with the free body diagram. [Diagram] Again, let the
angle of the bowl’s surface to the horizontal be θ. Because z0 is small,

sin θ ≈ θ ≈ tan θ =
dz

dr
= 2kr

and cos θ ≈ 1.
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We can consider the component of force tangential to the bowl, which is mg sin θ; New-
ton’s third law then gives for the magnitude of the acceleration a

ma = mg sin θ

noting that the acceleration is entirely tangential because the particle is constrained
to the surface of the bowl (and there is no centripetal force anymore). The radial
acceleration ar is given by

ar = −a cos θ

where we have introduced the appropriate sign to match the sign of r. Thus

ar = −g cos θ sin θ

So in the small-z approximation,

ar ≈ −g tan θ

ar =
d2r

dt2
= −2krg

The energy-based approach begins with the total energy

E =
1
2
mv2 + mgz

The velocity v is given by

v2 =
(

dr

dt

)2

+
(

dz

dt

)2

Because z is small, dz
dt �

dr
dt , and we conclude that

E =
1
2
m

(
dr

dt

)2

+ mgkr2

From conservation of energy, dE
dt = 0:

0 = m
dr

dt

d2r

dt2
+ 2mgkr

dr

dt

0 =
d2r

dt2
+ 2krg

Both approaches lead to the standard SHM differential equation

d2x

dt2
+ ω2x = 0

with angular frequency ω =
√

2kg; since the period T = 2π
ω ,

T =
2π√
2kg
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ii. The period is greater than the simple harmonic period. We can see this using both
approaches:
In the force-based approach, we obtained the exact equation

ar = −g cos θ sin θ

and approximated it as
ar = −g tan θ

Since cos θ sin θ < tan θ, the exact radial acceleration is smaller than the approximate
one, so that the particle takes longer to reach the origin in reality than it does in the
approximation, meaning that the period is larger.
In the energy-based approach, we dropped a (positive) term in the formula for the speed
v as expressed in terms of dr

dt . Therefore we overestimated dr
dt , and again the particle

takes longer to reach the origin in reality than it does in the approximation.

Copyright c©2011 American Association of Physics Teachers


