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INSTRUCTIONS

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN

• Work Part A first. You have 90 minutes to complete all four problems. Each question is
worth 25 points. Do not look at Part B during this time.

• After you have completed Part A you may take a break.

• Then work Part B. You have 90 minutes to complete both problems. Each question is worth
50 points. Do not look at Part A during this time.

• Show all your work. Partial credit will be given. Do not write on the back of any page. Do
not write anything that you wish graded on the question sheets.

• Start each question on a new sheet of paper. Put your AAPT ID number, your name, the
question number and the page number/total pages for this problem, in the upper right hand
corner of each page. For example,

AAPT ID #

Doe, Jamie

A1 - 1/3

• A hand-held calculator may be used. Its memory must be cleared of data and programs. You
may use only the basic functions found on a simple scientific calculator. Calculators may not
be shared. Cell phones, PDA’s or cameras may not be used during the exam or while the
exam papers are present. You may not use any tables, books, or collections of formulas.

• Questions with the same point value are not necessarily of the same difficulty.

• In order to maintain exam security, do not communicate any information about
the questions (or their answers/solutions) on this contest until after April 15,
2016.

Possibly Useful Information. You may use this sheet for both parts of the exam.
g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πε0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A
c = 3.00× 108 m/s kB = 1.38× 10−23 J/K
NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)
σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C
1eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s
me = 9.109× 10−31 kg = 0.511 MeV/c2 (1 + x)n ≈ 1 + nx for |x| � 1
sin θ ≈ θ − 1

6θ
3 for |θ| � 1 cos θ ≈ 1− 1

2θ
2 for |θ| � 1
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Part A

Question A1

The Doppler effect for a source moving relative to a stationary observer is described by

f =
f0

1− (v/c) cos θ

where f is the frequency measured by the observer, f0 is the frequency emitted by the source, v is
the speed of the source, c is the wave speed, and θ is the angle between the source velocity and the
line between the source and observer. (Thus θ = 0 when the source is moving directly towards the
observer and θ = π when moving directly away.)

A sound source of constant frequency travels at a constant velocity past an observer, and the
observed frequency is plotted as a function of time:
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The experiment happens in room temperature air, so the speed of sound is 340 m/s.

a. What is the speed of the source?

b. What is the smallest distance between the source and the observer?
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Solution

(a) For θ 0 the equation reduces to

fa = f0/(1− v/c)

and for θ ≈ p
fb = f0/(1 + v/c)

Read fa and fb off the early and late time portions of the graph and use

fa/fb = (1 + v/c)/(1− v/c)

For v � c this can be reduced to
fa/fb = 1 + 2v/c

(b) Let d be the (fixed) distance between the observer and the path of the source; let x be the
displacement along the path, with x = 0 at closest approach. Then for |x| � d,

cos θ ≈ cot θ = x/d

f = f0/(1− (v/c)(x/d))

f ≈ f0(1 + (v/c)(x/d))

Taking the time derivative, and noting that x′ is simply v,

f ′ = f0(v
2/c)d

From this point one can read f ′ off the center region of the graph and compute f0 from the above
(or, for v � c, simply use the average of the asymptotic frequencies). For v � c a cute trick is
also available: draw lines at the asymptotic values and through the central data points. The two
horizontal lines are 2f0(v/c) apart, so the time between the intersections is simply 2d/v.

For this problem, v = 10.66 m/s, d = 17.76 m, and f = 435.19 Hz.
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Question A2

A student designs a simple integrated circuit device that has two inputs, Va and Vb, and two outputs,
Vo and Vg. The inputs are effectively connected internally to a single resistor with effectively infinite
resistance. The outputs are effectively connected internally to a perfect source of emf E . The
integrated circuit is configured so that E = G(Va−Vb), where G is a very large number somewhere
between 107 and 109. The circuits below are chosen so that the precise value of G is unimportant.
On the left is an internal schematic for the device; on the right is the symbol that is used in circuit
diagrams.

Va

Vb

Vo

Vg

a

b

o

g

Solution

The important concept is that if E is finite, then Va ≈ Vb, since G is so large. It is possible
to carry around the expression for G around, and then realize that the size of G will result in it
dropping out of the following expressions.

a. Consider the following circuit. R1 = 8.2 kΩ and R2 = 560 Ω are two resistors. Terminal g
and the negative side of Vin are connected to ground, so both are at a potential of 0 volts.
Determine the ratio Vout/Vin.

a

b

o

g
R1

R2

Vout

Vin

Solution

The first time we solve it we will not assume that Va = Vb.

Since Vg = 0 (it is grounded), then Vo = G(Va − Vb). No current runs between a and b, so
any current through R1 also flows through R2. As such

Vb
R2

=
Vo

R1 +R2
,

so

Vo = G

(
Vi − Vo

R2

R1 +R2

)
Rearrange, and

Vo = Vi
1

1
G + R2

R1+R2

.
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But since G� R1/R2, we can write

Vo = Vi
R1 +R2

R2
.

This type of circuit is an amplifier with feedback.

b. Consider the following circuit. All four resistors have identical resistance R. Determine Vout
in terms of any or all of V1, V2, and R.

a

b

o

g

R

R

Vout
V1

V2

R

R

Solution

Out of laziness, we will assume that Va = Vb. Vg = 0 because it is grounded; if current I flows
through bottom resistor of picture (beneath b and g connections) then V2 = 2Vb, since the
voltage drop across the bottom two resistors must be equal. Similarly, the voltage drop across
the top two resistors is equal, so V1 + Vo = 2Va. Combining with our initial lazy assumption,

Vo = V1 − 2Va = V1 − V2.

This type of circuit is a subtractor.

c. Consider the following circuit. The circuit has a capacitor C and a resistor R with time
constant RC = τ . The source on the left provides variable, but bounded voltage. Assume
Vin is a function of time. Determine Vout as a function of Vin, and any or all of time t and τ .

a

b

o

g

R

Vout

Vin

C
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Solution

Stay lazy, and Va = Vb = 0.

Then CVi = Q, the charge on the capacitor, and Vo/R = I, the current through the capacitor
(no current flows through a, eh?) so

Vo
R

= I =
dQ

dt
= C

dVi
dt
,

or

Vo = τ
dVi
dt

This circuit is a differentiator.
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Question A3

Throughout this problem the inertial rest frame of the rod will be referred to as the rod’s frame,
while the inertial frame of the cylinder will be referred to as the cylinder’s frame.

A rod is traveling at a constant speed of v = 4
5c to the right relative to a hollow cylinder. The

rod passes through the cylinder, and then out the other side. The left end of the rod aligns with
the left end of the cylinder at time t = 0 and x = 0 in the cylinder’s frame and time t′ = 0 and
x′ = 0 in the rod’s frame.

The left end of the rod aligns with the left end of the cylinder at the same time as the right
end of the rod aligns with the right end of the cylinder in the cylinder’s frame; in this reference
frame the length of the cylinder is 15 m.

For the following, sketch accurate, scale diagrams of the motions of the ends of the rod and the
cylinder on the graphs provided. The horizontal axis corresponds to x, the vertical axis corresponds
to ct, where c is the speed of light. Both the vertical and horizontal gridlines have 5.0 meter spacing.

a. Sketch the world lines of the left end of the rod (RL), left end of the cylinder (CL), right end
of the rod (RR), and right end of the cylinder (CR) in the cylinder’s frame.

b. Do the same in the rod’s frame.

c. On both diagrams clearly indicate the following four events by the letters A, B, C, and D.

A: The left end of the rod is at the same point as the left end of the cylinder

B: The right end of the rod is at the same point as the right end of the cylinder

C: The left end of the rod is at the same point as the right end of the cylinder

D: The right end of the rod is at the same point as the left end of the cylinder

d. At event B a small particle P is emitted that travels to the left at a constant speed vP = 4
5c

in the cylinder’s frame.

i. Sketch the world line of P in the cylinder’s frame.

ii. Sketch the world line of P in the rod’s frame.

e. Now consider the following in the cylinder’s frame. The right end of the rod stops instanta-
neously at event B and emits a flash of light, and the left end of the rod stops instantaneously
when the light reaches it. Determine the final length of the rod after it has stopped. You can
assume the rod compresses uniformly with no other deformation.

Any computation that you do must be shown on a separate sheet of paper, and not on the
graphs. Graphical work that does not have supporting computation might not receive full credit.

Solution
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The Cylinder’s Frame

x

ct
CL CR RL

RR
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The Rod’s Frame

x′

ct′
RL RR

CL

CR

x
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Question A4

The flow of heat through a material can be described via the thermal conductivity κ. If the two faces
of a slab of material with thermal conductivity κ, area A, and thickness d are held at temperatures
differing by ∆T , the thermal power P transferred through the slab is

P =
κA∆T

d

A large, flat lake in the upper Midwest has a uniform depth of 5.0 meters of water that is covered
by a uniform layer of 1.0 cm of ice. Cold air has moved into the region so that the upper surface
of the ice is now maintained at a constant temperature of −10 ◦C by the cold air (an infinitely
large constant temperature heat sink). The bottom of the lake remains at a fixed 4.0 ◦C because
of contact with the earth (an infinitely large constant temperature heat source). It is reasonable
to assume that heat flow is only in the vertical direction and that there is no convective motion in
the water.

a. Determine the initial rate of change in ice thickness.

Solution

There are several issues that must be addressed to treat this, though some of the effects below
are either minimal, or don’t affect the answer.

i. Consider that the extra heat radiated into the air is only used to freeze the water on the
lower surface of the ice.

ii. Consider the fact that the ice has a lower density than water, so as the water freezes it
is lifting the ice above it.

iii. Consider the fact that the ice has a temperature gradient that changes as the ice layer
gets thicker, so there is extra heat radiated into the air is from this cooling.

iv. Consider the fact that the water has a temperature gradient that is changing, so as the
water layer gets thinner, there is extra heat radiated into the air is from this cooling.

v. Consider the fact that the pressure of the water beneath the ice might be changing.

Some of these effects we will address, others we will simply state “it is too small to change
our answer”.

The water right at the bottom of the ice is at the melting point: 0 C◦. We will assume that
there is a linear gradient of temperature in the water and a linear gradient of temperature in
the ice. This is justified because the energy needed to change the temperature of the water
is at most 4 C◦ · Cwater = 16800 J/kg, which is small compared to the latent heat of fusion.
If the temperature gradient were not uniform in the water, then there would be a net flux
of heat into areas where the second derivative of the temperature with respect to height was
negative, warming them up (and vice versa where the second derivative is positive). Because
the energy needed to change the temperature of the water is small compared to the heat of
fusion, the water would change temperature before a significant amount of ice formed, and
would continue to change temperature until the second derivative of the temperature with
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respect to height was zero everywhere in the water. The same considerations apply to ice, so
we can assume a linear temperature gradient everywhere.

The temperature gradient in the water is 4 C◦/5 m. Multiplying by the conductivity, we get
a power of

Pw =
4 C◦

5 m

0.57 W

mC◦
= 0.456 W/m2

delivered through the water.

Through the ice, essentially the same calculation gives

PI =
10 C◦

.01 m

2.2 W

m · C◦
= 2200 W/m2

delivered through the ice.

The power delivered through the water is small enough to be ignored compared to the ice.

Each square meter of water directly underneath the ice loses 2200 J of energy per second.
That is enough energy to freeze

2200 W/(330, 000 J/kg) = 6.7× 10−3 kg/s

of water into ice. That is

(6.7× 10−3 kg/s)/(920 kg/m3) = 7.2× 10−6 m3/s

of ice formed for each square meter of ice, which means the ice is growing at a rate

r = 7.2× 10−6 m/s = 2.6 cm/hr

Each square meter of ice initially weighs 9.2 kg. A power of 2200 W is enough to lift this ice
about 24 m/s against gravity. This number is so large compared to the rate that the ice does
move up as the water expands as it freezes that we may ignore any work done in freezing the
ice in the above calculations. We also assume that the rate of sublimation of the ice at the
top of the lake is negligible.

Note: I don’t think full points should be awarded unless issue 1 is addressed!

- I’m finding the actual physics analysis for (a) interesting. I think the obvious analysis
observes that the bottom of the slab is at 0 C, so you simply set the latent heat equal to the
heat conducted out through the slab (and neglect the heat conducted up through the much
thicker water). But I think a more careful analysis would add half [1] the energy needed to
cool the ice [2] to -10 degrees C. This would be a 3% correction, so not a huge deal, but you
might want to figure out whether this is right and whether you want to care about it when
grading.

[1] Half, because the cooling is spread across the thickness of the ice. The temperature gradient
in the ice is T ′ = (δT/d), where δT is the temperature difference and is the thickness. But
after adding an incremental thickness dx, the entire slab does not cool by T ′dx. Instead
the top surface cools not at all and the former bottom surface cools the full T ′dx. We are
interested in the integrated temperature change over thickness, which is

1/2T ′dx · d = 1/2(δT/d)dx · d = 1/2δTdx.
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That is, the actual heat given off by cooling ice is half of what would be given off if the newly
formed layer of ice cooled immediately to air temperature.

[2] But not the energy needed to cool the water – even though the water does cool as the
ice boundary moves downward, at initial conditions the heat given off is not appreciably
conducted to the boundary. I think.

b. Assuming the air stays at the same temperature for a long time, find the equilibrium thickness
of the ice.

Solution

This part can be answered without answering any of the previous parts.

If the water began with the initial 1.0 cm of ice melted, the depth would be 5.0092 m instead
of 5.00 m and the eventual equilibrium depth of ice would be unchanged, so we will solve
using the variable h0 = 5.0092 m for the initial depth of the lake, all in liquid water.

The ice will stop getting thicker when the energy flux through the water equals that through
the ice, that is, when

∆Twater
hwater

κwater =
∆Tice
hice

κice

If the thickness of the water is hwater, the amount of water that has frozen into ice had a
thickness of the h0 − hwater. Ice is less dense than water and therefore more thick for the
same mass, so the thickness of the ice obeys

hiceρice = (h0 − hwater)ρwater

to keep the mass of ice equal to the mass frozen out of the water. This implies

hwater =
h0ρwater − hiceρice

ρwater
.

Plugging this into the previous expression for equilibrium we have

∆Twaterκwaterρwater
h0ρwater − hiceρice

=
∆Ticeκice
hice

which can be solved for hice to give

hice = h0
∆Ticeκiceρwater

∆Twaterκwaterρwater + ∆Ticeκiceρice

We have all the relevant values, plugging them in we obtain

hice = 4.89 m

c. Explain why convective motion can be ignored in the water.
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Solution

Convection occurs when boiling a pot of water because the hot water at the bottom of the
pot is lower density than the colder water higher up. This means gravitational energy can be
released when that hot, low-density water rises and cold, high-density water falls. When the
hot water rises, it releases heat, cools, gets denser, and falls back down again. This cycle is
convection. This relies on water having lower density the hotter it is.

In the lake, the scenario is different because although the bottom of the lake is warmer, the
water there is not more dense. Water gets denser the colder it is up to 4 C◦, but below that
temperature it gets less dense. Thus, the water at the bottom of the lake, though warmer,
is more dense than the water above it. That means there is nothing to drive convection in
the water because moving some water around vertically would not release any gravitational
potential energy. The water is already in mechanical equilibrium and so does not move.

Some important quantities for this problem:
Specific heat capacity of water Cwater 4200 J/(kg · C◦)
Specific heat capacity of ice Cice 2100 J/(kg · C◦)
Thermal conductivity of water κwater 0.57 W/(m · C◦)
Thermal conductivity of ice κice 2.2 W/(m · C◦)
Latent heat of fusion for water Lf 330, 000 J/kg
Density of water ρwater 999 kg/m3

Density of ice ρice 920 kg/m3
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STOP: Do Not Continue to Part B

If there is still time remaining for Part A, you should review your work for
Part A, but do not continue to Part B until instructed by your exam

supervisor.
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Part B

Question B1

A uniform solid spherical ball starts from rest on a loop-the-loop track. It rolls without slipping
along the track. However, it does not have enough speed to make it to the top of the loop. From
what height h would the ball need to start in order to land at point P directly underneath the top
of the loop? Express your answer in terms of R, the radius of the loop. Assume that the radius of
the ball is very small compared to the radius of the loop, and that there are no energy losses due
to friction.

h

R

P

Solution

Fix the coordinate system on P .
The rotational inertia of the ball is given by I = βmr2, where β = 2/5.
The initial potential energy of the ball is mgh.
Assume the ball leaves at an angle θ away from the vertical. Then the x and y coordinates are

x = R sin θ

and
y = R(1 + cos θ)

The kinetic energy of the ball when it leaves the loop is

K = mg(h− y) =
1

2
mv2 +

1

2
Iω2

but since the ball rolls without slipping,

K =
1

2
mv2 +

1

2
Iω2 =

1

2
m(1 + β)v2

Call the speed of the ball when it leaves the loop v.
The x and y components of the velocity when the ball leaves the loop are given by

vx = v cos θ
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and

vy = v sin θ.

Yes, I was lazy with signs.
The ball is in a free fall for a time t where

y =
1

2
gt2 − vyt

and it moves horizontally a distance

x = vxt

Substitute from the equation for x above and

R sin θ = vt cos θ

or

t =
R

v

sin θ

cos θ
so

R+R cos θ =
1

2
g

(
R

v

sin θ

cos θ

)2

− v sin θ
R

v

sin θ

cos θ
,

or

(1 + cos θ) cos θ + sin2 θ =
gR

2v2
sin2 θ

cos θ
or

1 + cos θ =
gR

2v2
sin2 θ

cos θ

The ball leaves the surface when the normal component of the force of the loop on the ball just
drops to zero. This happens when

mg cos θ = m
v2

R

This means
v2

gR
= cos θ

so

1 + cos θ =
1

2

1− cos2 θ

cos2 θ
or

2 cos2 θ = 1− cos θ.

This can be solved as a quadratic, with solutions

cos θ =
−1±

√
1 + 8

4
=
−1

4
± 3

4

Only the positive answer of cos θ = 1/2 is relevant to the problem here (though the negative answer
is still physical!)

Combine with

mg(h− y) =
1

2
m(1 + β)v2
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from above, and the expression for circular motion

mg cos θ = m
v2

R

and get
h

R
= 1 +

(
1

2
(1 + β) + 1

)
cos θ = 1 +

(
1

2

(
1 +

2

5

)
+ 1

)
1

2
= 1.85
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Question B2

a. A spherical region of space of radius R has a uniform charge density and total charge +Q.
An electron of charge −e is free to move inside or outside the sphere, under the influence of
the charge density alone. For this first part ignore radiation effects.

i. Consider a circular orbit for the electron where r < R. Determine the period of the orbit
T in terms of any or all of r, R, Q, e, and any necessary fundamental constants.

Solution

Apply Gauss’ Law to find the E field inside the sphere:∮
~E · d~A =

Qenc
ε0

,∮
EdA =

Q

ε0

4
3πr

3

4
3πR

3
,

E4πr2 =
Q

ε0

r3

R3
,

E =
Q

4πε0

r

R3
.

Apply circular motion physics,

m
4π2r

T 2
= eE,

m
4π2r

T 2
= e

Q

4πε0

r

R3
,

T 2 =
16π3ε0mR

3

eQ
,

T = 2π

√
4πε0mR3

eQ
.

Yes, it is independent of r.

ii. Consider a circular orbit for the electron where r > R. Determine the period of the orbit
T in terms of any or all of r, R, Q, e, and any necessary fundamental constants.

Solution

Apply Gauss’ Law to find the E field outside the sphere:∮
~E · d~A =

Qenc
ε0

,∮
EdA =

Q

ε0
,

E4πr2 =
Q

ε0
,
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E =
Q

4πε0

1

r2
.

Apply circular motion physics,

m
4π2r

T 2
= eE,

m
4π2r

T 2
= e

Q

4πε0

1

r2
,

T 2 =
16π3ε0mr

3

eQ
,

T = 2π

√
4πε0mr3

eQ
.

Yes, it is dependent of r. You will hopefully recognize Kepler’s law. It is okay to start
from a statement like “outside a spherically symmetric charge distribution it is possible
to treat the distribution as a point charge.”

iii. Assume the electron starts at rest at r = 2R. Determine the speed of the electron
when it passes through the center in terms of any or all of R, Q, e, and any necessary
fundamental constants.

Solution

Use the results of above and find the potential difference between the center and r = 2R.

∆V = −
∫ 0

2R

~E · d~l,

=

∫ R

2R

Q

4πε0

1

r2
+

∫ 0

R

Q

4πε0

r

R3
,

=
Q

4πε0

(
−1

2R
− −1

R
+

R2

2R3

)
,

=
Q

4πε0R

Then use work-energy,

v =

√
2

m
e∆V ,

=

√
2eQ

4πε0mR
.

b. Accelerating charges radiate. The total power P radiated by charge q with acceleration a is
given by

P = Cξan
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where C is a dimensionless numerical constant (which is equal to 1/6π), ξ is a physical
constant that is a function only of the charge q, the speed of light c, and the permittivity of
free space ε0, and n is a dimensionless constant. Determine ξ and n.

Solution

Dimensional analysis is the way to go. a has dimensions of [L]/[T]2, P has dimensions of
[M][L]2/[T]3, c has dimensions of [L]/[T], q has dimensions of [C], and ε0 has dimensions of
[C]2[T]2/[M][L]3.

Set up an equation such as
P = aαcβε0

γqδ

or (
[M][L]2/[T]3

)
=
(
[L]/[T]2

)α
([L]/[T])β

(
[C]2[T]2/[M][L]3

)γ
([C])δ

Charge is only balanced if γ = −2δ. Mass is only balanced if γ = −1. Similar expressions
exist for length and time, yielding

P =
1

6π
a2c−3ε0

−1q2

c. Consider the electron in the first part, except now take into account radiation. Assume that
the orbit remains circular and the orbital radius r changes by an amount |∆r| � r.

i. Consider a circular orbit for the electron where r < R. Determine the change in the
orbital radius ∆r during one orbit in terms of any or all of r, R, Q, e, and any necessary
fundamental constants. Be very specific about the sign of ∆r.

Solution

The energy radiated away is given by

∆E = −PT,

where T is determined in the previous sections.

It is possible to compute the actual energy of each orbit, and it is fairly trivial to do for
regions r > R, but perhaps there is an easier, more entertaining way. Consider

∆E = ∆K + ∆U

and for small changes in r,
∆U

∆r
≈ −F =

eQ

4πε0

r

R3
.

This implies (correctly) that the potential energy increases with increasing r.

∆K

∆r
≈ d

dr

(
1

2
mv2

)
=

1

2

d

dr

∣∣∣∣rmv2r
∣∣∣∣
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but mv2/r = F , so
∆K

∆r
≈ 1

2

d

dr
|rF |

and then
∆K

∆r
≈ eQ

4πε0

r

R3
.

This implies (correctly) that the kinetic energy increases with increasing r. Not a sur-
prise, since this region acts similar to a multidimensional simple harmonic oscillator.

Combine, and
∆E

∆r
≈ 2

eQ

4πε0

r

R3
= 2ma

Finally,

∆r = −
(

1

6π

a2

c3ε0
e2
)(

2π

√
4πε0mR3

eQ

)(
1

2ma

)
This can be simplified, so

∆r = −
(

1

12π

a

mc3ε0
e2
)(

2π

√
4πε0mR3

eQ

)
,

= −
(

1

6

e2

m2c3ε0

)(√
4πε0mR3

eQ

)(
eQ

4πε0

r

R3

)
,

= −1

6

√
e5Q

4πε03R(mc2)3
r

R

You might want to group these in terms of dimensionless groupings:

∆r = −2

3

(
e2

4πε0Rmc2

)√
eQ

4πε0Rmc2
r

ii. Consider a circular orbit for the electron where r > R. Determine the change in the
orbital radius ∆r during one orbit in terms of any or all of r, R, Q, e, and any necessary
fundamental constants. Be very specific about the sign of ∆r.

Solution

Pick up where we left off, and
∆U

∆r
≈ −F =

eQ

4πε0

1

r2
.

This implies (correctly) that the potential energy increases with increasing r.

∆K

∆r
≈ 1

2

d

dr
|rF |
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and so
∆K

∆r
≈ − eQ

8πε0

1

r2
.

This implies (correctly) that the kinetic energy decreases with increasing r. Combine, and

∆E

∆r
≈ 1

2

eQ

4πε0

r

R3
=
ma

2

Follow the same type of substitutions as before, and

∆r = −
(

1

6π

a2

c3ε0
e2
)(

2π

√
4πε0mr3

eQ

)(
2

ma

)
This can be simplified, so

∆r = −
(

1

3π

a

mc3ε0
e2
)(

2π

√
4πε0mr3

eQ

)
,

= −
(

2

3

e2

m2c3ε0

)(√
4πε0mr3

eQ

)(
eQ

4πε0

1

r2

)
,

= −1

3

√
e5Q

4πε03r(mc2)3

You might want to group these in terms of dimensionless groupings:

∆r = −4

3

(
e2

4πε0Rmc2

)√
eQ

4πε0Rmc2
R2

r
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Answer Sheets

Following are answer sheets for some of the graphical portions of the test.
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The Cylinder’s Frame

x

ct
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The Rod’s Frame

x′

ct′
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