<table>
<thead>
<tr>
<th>Abstract ID</th>
<th>Presenting Author Last Name</th>
<th>Presenting Author First Name</th>
<th>Session</th>
<th>Application Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>Roudelbush</td>
<td>Deborah</td>
<td>AA</td>
<td>Planning Effective Professional Development</td>
</tr>
<tr>
<td>540</td>
<td>Zonowski</td>
<td>Joseph</td>
<td>AA</td>
<td>Renewable Energy and Climate Change in the Classroom and Lab</td>
</tr>
<tr>
<td>477</td>
<td>Bezanis</td>
<td>Ilya</td>
<td>AB</td>
<td>Take-home Experience: Student-led Exploration of Coupled Harmonic Oscillators</td>
</tr>
<tr>
<td>506</td>
<td>Masai</td>
<td>Michael</td>
<td>AB</td>
<td>Lab Kit for All-Exams Experiments in Physics for Life Sciences</td>
</tr>
<tr>
<td>500</td>
<td>Kolome</td>
<td>Melissa</td>
<td>AB</td>
<td>Using Circuit Kits and LEDS to Teach Optics at Home</td>
</tr>
<tr>
<td>517</td>
<td>Smith</td>
<td>Donald</td>
<td>AC</td>
<td>Teaching Machine Learning to Non-Scientists</td>
</tr>
<tr>
<td>540</td>
<td>Zonowski</td>
<td>Joseph</td>
<td>AD</td>
<td>Using Computation to Make General Education Courses Contemporary and Compelling</td>
</tr>
<tr>
<td>543</td>
<td>Titterton</td>
<td>Brock</td>
<td>AD</td>
<td>Equity in Introductory Physics Through Invitational Mentoring in Ockholt Sokialation</td>
</tr>
<tr>
<td>510</td>
<td>Dose</td>
<td>Amelia</td>
<td>AD</td>
<td>ULAB: An Accessible, Peer-led Framework for Facilitating Undergraduate Research Experiences</td>
</tr>
<tr>
<td>541</td>
<td>Quintero</td>
<td>Kandoro</td>
<td>AD</td>
<td>Critical Investigations of Physics Identity at HSIs</td>
</tr>
<tr>
<td>541</td>
<td>Saliho</td>
<td>Naomi</td>
<td>AD</td>
<td>Exploring Identity Formation of Ethnic and Gender Minorities in Physics</td>
</tr>
<tr>
<td>559</td>
<td>Zolamprom</td>
<td>Blanca</td>
<td>AD</td>
<td>A Critical Reahning of STEM Students' Support and Mentorship Channels</td>
</tr>
<tr>
<td>455</td>
<td>Hu</td>
<td>Peter</td>
<td>AF</td>
<td>Clicker Question Sequence on Uncertainty Principle: Virtual and In-Person Implementation</td>
</tr>
<tr>
<td>513</td>
<td>Kurski</td>
<td>Tuhde</td>
<td>AF</td>
<td>Investigating Students’ Strengths and Difficulties in Quantum Computing</td>
</tr>
<tr>
<td>536</td>
<td>Hansen</td>
<td>John</td>
<td>AF</td>
<td>Curricular Analytics in Physics</td>
</tr>
<tr>
<td>543</td>
<td>Fekker</td>
<td>Zachary</td>
<td>AF</td>
<td>Planning Prompt Surveys to Encourage Early Completion of Homework Assignments</td>
</tr>
<tr>
<td>560</td>
<td>Cunningham</td>
<td>Karen</td>
<td>AP</td>
<td>Reinventing the Laboratory curruculum at a Research-intensive Institution</td>
</tr>
<tr>
<td>465</td>
<td>Justice</td>
<td>Paul</td>
<td>AP</td>
<td>Impact of Mathematical Reasoning on Students’ Understanding of Quantum Optics</td>
</tr>
<tr>
<td>482</td>
<td>Hewagallage</td>
<td>Dora</td>
<td>AP</td>
<td>Exploring the Factors Affecting the Expert-like Scientific Attitudes</td>
</tr>
<tr>
<td>529</td>
<td>Makowski</td>
<td>Donald</td>
<td>AP</td>
<td>Realistic Assessment of Students Mathematical Preparation in Introductory Physics Courses</td>
</tr>
<tr>
<td>532</td>
<td>Hecker</td>
<td>Andrew</td>
<td>AP</td>
<td>The Evolution of Accuracy and Speed in Online Mastery practice</td>
</tr>
<tr>
<td>540</td>
<td>Zonowski</td>
<td>John</td>
<td>AP</td>
<td>Examining Student Reasoning: A Replication Study for the ISLE HPII Program</td>
</tr>
<tr>
<td>564</td>
<td>Byrd</td>
<td>John</td>
<td>AP</td>
<td>Exploring the Origins of Physics Student Misconceptions in Mathematics</td>
</tr>
<tr>
<td>521</td>
<td>Rubeng</td>
<td>Joshua</td>
<td>AP</td>
<td>Training Novice TAs and Labs to Teach ISLE-Based Labs</td>
</tr>
<tr>
<td>530</td>
<td>Alipio-Muniz</td>
<td>Emily</td>
<td>AP</td>
<td>Classroom Observations As Part of FA Training</td>
</tr>
<tr>
<td>474</td>
<td>Jensen</td>
<td>Steven</td>
<td>BA</td>
<td>Lessons from Extra Dimensions: Rotations Were Bivectors All Along</td>
</tr>
<tr>
<td>676</td>
<td>Fredericks</td>
<td>James</td>
<td>BA</td>
<td>Teaching Measurement to Prepare for Quantum Sensing</td>
</tr>
<tr>
<td>512</td>
<td>Roudelbush</td>
<td>Deborah</td>
<td>BA</td>
<td>21st Century Physics Integrated into the High School Physics Curriculum</td>
</tr>
<tr>
<td>528</td>
<td>Moore</td>
<td>Benjamin</td>
<td>BA</td>
<td>The Importance of Inclusiveness of Learning Environment in Promoting Equity</td>
</tr>
<tr>
<td>550</td>
<td>Perkins</td>
<td>Christopher</td>
<td>BA</td>
<td>Not all Disadvantages Are Equal: Investigating Gender and Educational Beliefs</td>
</tr>
<tr>
<td>562</td>
<td>Perry</td>
<td>Spencer</td>
<td>BA</td>
<td>The Development of a Hypersonic Curriculum: Initial Results</td>
</tr>
<tr>
<td>521</td>
<td>Stover</td>
<td>Ben</td>
<td>BA</td>
<td>Not all Disadvantages Are Equal: Investigating Gender and Educational Beliefs</td>
</tr>
<tr>
<td>353</td>
<td>Stewart</td>
<td>John</td>
<td>BA</td>
<td>The Effect of Prior Preparation on Students Underrepresented in Physics</td>
</tr>
<tr>
<td>510</td>
<td>Lewisinlaw</td>
<td>Sarat</td>
<td>BC</td>
<td>Introductory Physics Students’ Concerns about Transitioning to College</td>
</tr>
<tr>
<td>521</td>
<td>Eisenbauer</td>
<td>Julia</td>
<td>BC</td>
<td>Exploring an Inital Implementation of Mastery-Based Yesting</td>
</tr>
<tr>
<td>542</td>
<td>Ichterbaum</td>
<td>Mark</td>
<td>BC</td>
<td>Asking What Happens</td>
</tr>
<tr>
<td>547</td>
<td>Ichterbaum</td>
<td>Benjamin</td>
<td>BC</td>
<td>Un-grading Physics Classes to Support all Students Succeeding</td>
</tr>
<tr>
<td>559</td>
<td>Greisse</td>
<td>Raaghi</td>
<td>BC</td>
<td>1Estimated Due Dates and the Result Shocked Me</td>
</tr>
<tr>
<td>572</td>
<td>Schoene</td>
<td>Elizabeth</td>
<td>BC</td>
<td>The “Spaghett” Approach to Equitable, Culturally Responsive, and Accessible Classrooms.</td>
</tr>
<tr>
<td>458</td>
<td>Tingen</td>
<td>York</td>
<td>BD</td>
<td>Physics Teaching at Teams combined with SharePoint and Moodle</td>
</tr>
<tr>
<td>479</td>
<td>Vito</td>
<td>Y</td>
<td>BD</td>
<td>(cancil) Quantum Science in Visible Range</td>
</tr>
<tr>
<td>516</td>
<td>Nistorin</td>
<td>Tatiana</td>
<td>BD</td>
<td>Using a Capstone Experience in the Introductory Physics Classes</td>
</tr>
<tr>
<td>535</td>
<td>Radkiew</td>
<td>Jeffrey</td>
<td>BD</td>
<td>Laboratory Instruction Using Radio and Its Property</td>
</tr>
<tr>
<td>597</td>
<td>McCollan</td>
<td>Michele</td>
<td>BD</td>
<td>Augmented Reality Models of Physics Concepts</td>
</tr>
<tr>
<td>522</td>
<td>Schwartz</td>
<td>Megan</td>
<td>BD</td>
<td>Nevertheless, It persisted: The Impact of Persistence in Computational Education</td>
</tr>
<tr>
<td>534</td>
<td>Ahmed</td>
<td>Munir</td>
<td>BF</td>
<td>Modeling and Modeling to Non-science Majors II: Modelling Diffusion for Life Science Majors by Incorporating Computation</td>
</tr>
<tr>
<td>537</td>
<td>Water</td>
<td>Dafiy</td>
<td>BF</td>
<td>Video Evidence of Computational Thinking Practices in High School Physics</td>
</tr>
<tr>
<td>540</td>
<td>Dicaro</td>
<td>James</td>
<td>BF</td>
<td>A Long-term Assessment of Computational Activities in an Astronomy Course</td>
</tr>
<tr>
<td>530</td>
<td>Doffat</td>
<td>Gibrat</td>
<td>BF</td>
<td>Relinking the STEMProject through the Problematics</td>
</tr>
<tr>
<td>569</td>
<td>Mack</td>
<td>Lillian</td>
<td>BF</td>
<td>Evaluating Patterns Across Educators in Their Reflection of Computational Thinking</td>
</tr>
<tr>
<td>547</td>
<td>Janko</td>
<td>Benjamin</td>
<td>BF</td>
<td>Understanding Physics Identically in Computational Methods Courses</td>
</tr>
<tr>
<td>509</td>
<td>Werth</td>
<td>Alexandra</td>
<td>BF</td>
<td>Engagement in collaboration and teamwork using google Collaboration</td>
</tr>
<tr>
<td>520</td>
<td>Yatrouche</td>
<td>Scott</td>
<td>BG</td>
<td>Investigating Student Performance in a Hybrid-Fipped Modern Physics Course</td>
</tr>
<tr>
<td>530</td>
<td>Ahmed</td>
<td>Shehan</td>
<td>BG</td>
<td>How Students Evaluate their Work in an ISLE-based Physics Course</td>
</tr>
<tr>
<td>537</td>
<td>Jamulimina</td>
<td>Diane</td>
<td>BG</td>
<td>What Do Large Introductory Physics ISLE-based Courses Look Like?</td>
</tr>
<tr>
<td>532</td>
<td>Makowski</td>
<td>Patrick</td>
<td>BG</td>
<td>Teaching A Planned Constructivist ISLE Curriculum in A Student-centered Way</td>
</tr>
<tr>
<td>642</td>
<td>Irem</td>
<td>Saifan</td>
<td>BG</td>
<td>Improving student understanding of the operational definition of electric field</td>
</tr>
<tr>
<td>478</td>
<td>Scherr</td>
<td>Rachel</td>
<td>CA</td>
<td>Inventing Undergraduates into the Art and Science of Teaching</td>
</tr>
<tr>
<td>510</td>
<td>Porhko</td>
<td>Katherine</td>
<td>CA</td>
<td>The Art and Science of Teaching with PhysE Simulations</td>
</tr>
<tr>
<td>573</td>
<td>Belloni</td>
<td>Mario</td>
<td>CA</td>
<td>An Experiment-First and Inclusive Approach to Teaching Introductory Physics</td>
</tr>
<tr>
<td>541</td>
<td>Yanggaiding</td>
<td>Fanggaiding</td>
<td>CB</td>
<td>Assessing and Improving Equity in Physics Learning Environments I</td>
</tr>
<tr>
<td>540</td>
<td>Richardson</td>
<td>Artis</td>
<td>CB</td>
<td>The Importance of Inclusiveness of Learning Environment Promoting Equity</td>
</tr>
<tr>
<td>540</td>
<td>Richardson</td>
<td>Artis</td>
<td>CB</td>
<td>TEAMUP: The Time is Now: Two years later</td>
</tr>
</tbody>
</table>
4605 Dittrich Toby (CC) Astronomy Paper Modern Eddington Experiment

4590 Trucks Jessica (CC) Astronomy Paper Does a Planetary Moon Show Achieve its Learning Goals for Audiences?

6525 Rao Suresh (CC) Astronomy Paper Improvements on the Attractive Mass Discussion

5760 Lindell Rebecca (CC) Astronomy Paper Augmented Reality Visualizations for Teaching Lunar Phases

5164 Trochu Melissa (CC) Diversity, Equity, and Inclusion: Theoretical Frameworks and Methodologies White Male Physicists Sense-making Around Equity in STEM

5168 Wood Laura (CD) Diversity, Equity, and Inclusion: Theoretical Frameworks and Methodologies Representing Observational Fieldnotes through Sketching

5647 Martini Michelle (CC) Diversity, Equity, and Inclusion: Theoretical Frameworks and Methodologies Queering Methodologies in Physics Education Research

5718 Williams Stephanie (CD) Diversity, Equity, and Inclusion: Theoretical Frameworks and Methodologies A Critical Discourse Analysis Framework for Physics Education Research

4937 Feitzinger as Jr. David (CC) Educational Technology As A Double-edged Sword Using Linear Elasticity to Study the Wave-Motion of Flexible Strings

4711 Nunes Jr. Geoff (CE) Educational Technology As A Double-edged Sword Graphing and Curve Fitting for Introductory Physics

5296 Kiss Jevan (CE) Educational Technology As A Double-edged Sword Utility of Peer-Research Collaboration to Facilitate Learning in Introductory Physics

5307 Powers Nathan (CD) Educational Technology As A Double-edged Sword Choosing a sandbox for project-based labs

5359 Alkhafra Mohammd (CE) Educational Technology As A Double-edged Sword Effect of Selecting Right Coordinates System on Understanding Introductory Courses

5358 Martinez Jovanny (CE) Educational Technology As A Double-edged Sword Sinugbiong Binisaya Nga Physics: Culture-Based Material for Physics Learning

4517 Haider Zarar (CF) High School Searching for Ultra-Short-Period Planets using a Deep Neural Network

4923 Komjan Sir (CF) High School Marking the year with Diversity

5179 Stoeckel Marta (CF) High School Evidence-Based Reasoning for Integrated STEM

5392 Huey Tia (CF) High School Physics Teachers Integrating Social Justice with Science content

5970 Bachorst Charise (CF) High School Science and Mathematics: A double edged sword

5710 Agu Philomena (CF) High School Inclusive and Equitable Curriculum and Assignments for Minority Physics Students

4853 Grochowski Jan (CG) Open Source Physics Using Physics Ideas in Agent-based Modeling of Social Systems

4621 Cox Anne (CO) Open Source Physics Open Source Physics for all ages

4738 Gaff Michael (CG) Open Source Physics Novel Laboratory Activities Embodied by Open Source Physics

4787 Espinembre Francisco (CG) Open Source Physics WebEJS: A fully Web-based Version of Easy JavaScript Simulations

5341 Titus Aaron (CO) Open Source Physics Incorporating project-based learning into your physics courses with OSP

5604 Barbales Lyle (CG) Open Source Physics OSP's Hidden Variables

5771 Rao Rolex (CG) Open Source Physics Two Different Representations of Complex Number and their Applications

4548 Matheus Alexandre (CH) PER: Assessment, Grading and Feedback I Evolution in Student Conceptual Understanding of Energy and Momentum

4638 De Ritis Shlomit (CH) PER: Assessment, Grading and Feedback I The Assessment of Introductory-Physics Course by item Response Theory

5104 Prosser' Paige (CH) PER: Assessment, Grading and Feedback I Reflective Writing in Physics I

5265 Shaw Nicholas (CH) PER: Assessment, Grading and Feedback I Who Answers (Simpler) Multiple-Choice Questions in Physics Correctly?

5433 Wang Janian (CH) PER: Assessment, Grading and Feedback I (Cancel) The Impact of Learning Assistants' POCs on Students

5853 Zimmerman Charlotte (CH) PER: Assessment, Grading and Feedback I Assessing Physics Quantitative Literacy Focused on Conceptualizing Algebraic Ideas

5992 Ehrlich Sara (CD) Diversity, Equity, and Inclusion: Theoretical Frameworks and Methodologies Women Have Lower Physics Self-Efficacy Contrasting Grade

4747 Santana Lisabeth (DD) PER: Diversity, Equity & Inclusion I Investigating Experiences of Women in Color in Physics and Astronomy

5292 Jackson Megan (DD) PER: Diversity, Equity & Inclusion I Gender Bias in Peer Recognition Across Course Levels and Contexts

5317 Ostrander Jessica (DD) PER: Diversity, Equity & Inclusion I Women of color in Earth physics departments: Past and Present

5550 Hubert Katslyn (DD) PER: Diversity, Equity & Inclusion I Incursionary Fields or Departments?: Undergraduate Degrees for Women of Color

5610 Monnet David (DD) PER: Diversity, Equity & Inclusion I Analysis of Free Supplemental Resources Impact on Diverse Student Body

5160 Henderson Charles (DE) PER: Diversity, Equity & Inclusion I Characteristics of Departments with High-use of Active Learning

5164 Hendrych Michael (DE) PER: Diversity, Equity & Inclusion I Peer Instructors Supporting Pre-service Teachers in Building Upon Student Ideas in Instruction

5213 Fox Joseph (DE) PER: Diversity, Equity & Inclusion I Does social justice at the top trickle down?

5825 El-Awady Shams (DE) PER: Diversity, Equity & Inclusion I Persons for Supporting Physicists' Engagement in Informal Education

5310 Khoong Helen (DE) PER: Diversity, Equity & Inclusion I Student Support & Professional Development, Program and Institution: Understanding Future Professional Selves

5474 Hass Christopher (DE) PER: Diversity, Equity & Inclusion I How Can PERHubs Support Emerging Community Members' Self-efficacy?

4777 Physics Education Research in the K-12 Classroom, Physics Majors: High School to Doctorate Exploring Factors Influencing the Reflection of Physics Majors on Their Major

4865 Pettifor Andrew (DF) Physics Education Research in the K-12 Classroom, Physics Majors: High School to Doctorate Alumni Engagement in Undergraduate Physics and Astronomy Education

5030 Gallant Terrie (DF) Physics Education Research in the K-12 Classroom, Physics Majors: High School to Doctorate Integrating Computation in the Algebra-Based High School Physical Classroom

5071 Johnson Paul (DF) Physics Education Research in the K-12 Classroom, Physics Majors: High School to Doctorate Abstracts of Classical Education Movement in Physics Education Research Literature

4625 Gelerman Richard (DD) Supporting Physics Teaching with a Planetsarium Getting to Mars — Applied Astronomics Visualized

4625 Shaff Amalia (DD) Supporting Physics Teaching with a Planetsarium Seeing the Whole Picture: Practical Uses for the Electromagnetic Spectrum

5235 Laster Janelle (DD) Supporting Physics Teaching with a Planetsarium Student’s Choose Awards: Preliminary Results of a Survey on Planetsarium Impact

4725 Becchetti Frederick (DH) Upper Division Undergraduate Me Optical Scattering as an Analog to Nuclear Scattering

5214 Croxelle Nial (DH) Upper Division Undergraduate Social network analysis of student collaboration in pandemic-affected courses

5322 Potter Christopher (DH) Upper Division Undergraduate Misconceptions and Attitudinal and Motivational Factors in Physics Graduate Students

5385 Sayer Ryan (DH) Upper Division Undergraduate Impact of pre-class reading and peer instruction in quantum mechanics

5474 Morgan Patrick (DH) Upper Division Undergraduate (Canceled) Valence Reciprocity and the Relativity Principle

5833 Lancaster Jarrell (DH) Upper Division Undergraduate Simulating quantum dynamics with IBM quantum computers

5581 Johnston Brandon James (DH) Upper Division Undergraduate Formally Organized Graduate Student Study Groups: Let’s Talk About That

4784 Lu Kristine (DI) Supporting Faculty and Students in the Era of COVID Using Mutual Mentoring to Mitigate Isolation for TYC Physics Faculty

4784 NSalah Cuffey (DI) Supporting Faculty and Students in the Era of COVID Faculty Members’ Experiences During the COVID-19 Pandemic

4966 Iva Rachel (DI) Supporting Faculty and Students in the Era of COVID Supporting Students in Current Times of Change
5572 Edwards Emily (EA) Building a Quantum Information Science and Engineering Curriculum for a Diverse Community Progress report on K-12 Quantum Education
5590 Giff Lenon (EA) Building a Quantum Information Science and Engineering Curriculum for a Diverse Community TBD
4720 White Isitain (EB) Diversifying Through Connections at TCYS I Diversity in Physics in TCYS: People, Places, and Pedagogy
4732 Donizello Glenda (EB) Diversifying Through Connections at TCYS I TYC Interests and Needs, and DEI Materials
5247 Des Jardins Angela (EC) High Altitude Ballooning I Nationwide Eclipse Ballooning Project: Approaches for Guiding Student Learning
5016 Diamant headlights (EB) Overview of Educational Applications of Lighter Than Air Ballooning
4519 Natra Atmipal (ED) General Top Papers Modification of Newton's Second Law of Motion
4895 Topicc Irving (ED) General Top Papers Trends in Physics Higher Education
5163 Stephens Kayla (ED) General Top Papers Inspiring the Next Generation of Students in Physics and Astronomy
5270 Zhang Tong (ED) General Top Papers Using Natural Language Processing in Clustering Student Behaviors
5476 Topica Dr Rahul (ED) General Top Papers In-medium Decay Constant of Y(003) and Yp-s(0440) States
4792 Wheatley Christopher (EF) Diverse Investigations I Network Analysis of the BESM with Modified Module Analysis-Parti
4783 Diverse Investigations I Development of Self-Efficacy in an Advanced Physics Lab
4810 Place John (EF) Diverse Investigations I Using Machine Learning to Predict Student Performance in Introductory Mechanics
5152 Stanley Bryan (EF) Diverse Investigations I Becoming an Informatics Graduate Program Leader: Experiences and Choices
5165 Rajah Ong (EF) Diverse Investigations I How Social Psychological Variables Affect Students' Performance in Introductory Physics
5347 Myers Carissa (EF) Diverse Investigations I A Mixed Methods Approach Towards Defining Students’ Ranges of Self-Efficacy
4502 Mison Milan (EF) PER: Student Support & Professional Development, Program and Institutional Practices of Faculty Sentiment On Their Transition To Online Teaching
5263 Sharpkey Daniel (EG) PER: Student and Instructor Support & Professional Development, Program and Institutional Investigating the Effect of Diversity in Mixed-reality STEM OTA Training
5411 TV Whitney (EG) PER: Student and Instructor Support & Professional Development, Program and Institutional Supporting Physics Instructors to Facilitate Effective and Inclusive Group Work
5287 Nalla Asaani (EG) PER: Student and Instructor Support & Professional Development, Program and Institutional Challenges and benefits of remote undergraduate research: A longitudinal study
5355 Sachinprasad Diana (EG) PER: Student and Instructor Support & Professional Development, Program and Institutional A Leadership Institute’s Role in Supporting Team-based Departmental Change
5500 Richter Richard (EG) PER: Student and Instructor Support & Professional Development, Program and Institutional Student and Instructor Team-based approaches to programmatic resources: Who the Guide really guides
4708 Carlsmith Duncan (FA) Best Practices in Educational Technology II Live Script Tutorials in Computational Magnetism
4793 Koenig Kathleen (FA) Best Practices in Educational Technology II Incorporating affect in the design of interactive web-based problem-solving tutorials
5300 Countryman Coleen (FA) Best Practices in Educational Technology II Gamifying Simulation to Improve Understanding and Attitudes Towards Electric Fields
5324 Duffy Andrew (FA) Best Practices in Educational Technology II Improving Assignments using the Nbihape Extension for Jupiter
5719 Carign Jake (FA) Best Practices in Educational Technology II Simulating Scientific Collaboration and Model Refinement With Virtual Reality
4797 Balish Victoria (FB) Building a Quantum Information Science and Engineering Curriculum for a Diverse Community What doesn’t it Mean to See Quantum Mechanics?
5359 Porter Christopher (FB) Building a Quantum Information Science and Engineering Curriculum for a Diverse Community D1: TEAM: Developing a Modular Curriculum for a Diverse QIS Community
5637 Zecchi Benjamin (FB) Building a Quantum Information Science and Engineering Curriculum for a Diverse Community Creating a Quantum Information Science and Technology Minor at RIT
5777 Benjamin Michael (FB) Building a Quantum Information Science and Engineering Curriculum for a Diverse Community MOD: Divalent Heavy Elements to the Quantum Industry at a Diverse University
4592 Fermio Raymond (FC) Diverse Through Connections at TCYS II Embedded academic coaching at Montgomery College: Achieving the Promise Academy
5107 Snyder Jennifer (FC) Diverse Through Connections at TCYS II Community Building in Physics Classroom: A Pandemic Update
5394 Shrumx Agene (FD) Diverse Through Connections at TYCs Understanding Hispanic Physics Majors’ Expectations of Relationships-Building at Community College
566 Carter Tom (FC) Diverse Through Connections at TCYS II Using Intrusive Advising to Improve Student Success
5651 Goldenman Rachel (FC) Diverse Through Connections at TCYS II Geovisualization of Nobel! The Harvard Computer and other Neglected Pioneers
5113 Macongpyeanganon Saeed (FG) Gender Diversity of Performance and Choice by Physics by Female Students
5137 McCullough Laura (FD) Gender An Update on Women’s Leadership in Physics Education
5221 Thethi Mara (FD) Gender The Impact of a Physics Camp on Girls’ Critical Psychological Identities
5316 Agrimson Erick (FE) High Altitude Ballooning II High Altitude Ballooning II: High Altitude Ballooning II
4592 Kriner Michael (FG) Diverse Through Connections at TCYS II Nationwide Eclipse Ballooning Project Engineering Online: Connecting Multiple-Choice to Drawing Vectors
4724 Khine Kyi Hidde (FG) PER: Student Content Understanding, Problem-Solving and Reasoning II Learning Vectors Online: Comparing Multiple-Choice to Drawing Vectors
5236 Mari Prakash Harish (FG) PER: Student Content Understanding, Problem-Solving and Reasoning II Algebraic Accuracy and Response Time: Physics vs Common Math Symbols
5462 Lahay Phoebe K Y (FG) PER: Student Content Understanding, Problem-Solving and Reasoning II Using 3D printer models to help students to draw Free-Body Diagrams
5485 Maries Alexandre (FG) PER: Student Content Understanding, Problem-Solving and Reasoning II Improving Student Understanding of Static Equilibrium with an Interactive Tutorial*
5588 Maries Stephanie (FG) PER: Student Content Understanding, Problem-Solving and Reasoning II Gender-Inspired Student Learning: Developing an Automated Coding of PEDR Reasoning
5656 Kryukovskaya Mila (FG) PER: Student Content Understanding, Problem-Solving and Reasoning II Teaching Reasoning Skills Necessary to Validate or Reject a Response
4730 Laverty James (FH) PER: Assessment, Grading and Feedback II Supporting Instructors Through Research Based Assessment
4897 Rodriguez Janina (FH) PER: Assessment, Grading and Feedback II Using IBM Watson as a Tool for Student Short-Answer Analyses
5138 Girot-Hernandez Daniela (FH) PER: Assessment, Grading and Feedback II Changes in Student Study Strategies from High School to College
5438 Shepler Nina (FH) PER: Assessment, Grading and Feedback II Study Habits of College-Bound High School Physics and Astronomy Students
5491 Iati Dena (FH) PER: Assessment, Grading and Feedback II Developing the Key Organizational Components Model for Informal Physics Programs
5620 Fairbanks Matthew (FH) PER: Assessment, Grading and Feedback II The Pandemic and Introductory Mechanics Course Learning Outcomes
4515 Mares Steven (GA) Implementing Get the Facts Out Resources Locally & Regionally Recruiting Teachers: What’s that thing you do?
4546 Ruggerio Marianna (GA) Implementing Get the Facts Out Resources Locally & Regionally Strengthening High School Teacher Quality through a University Partnership
5340 May David (GA) Implementing Get the Facts Out Resources Locally & Regionally Teachers challenge upper-tier salaries to meet other professionals
5359 Gruene Get the Facts Out Resources Locally & Regionally No student study: Increased desire to become a teacher
4728 Wintich Chuck (GC) PER: Diversity, Equity & Inclusion II Encouraging a Growth Mindset
5228 Rodriguez Miguel (GC) PER: Diversity, Equity & Inclusion II International Graduate Student Perspectives and Implications for Physics Departments
5624 Cristman Elaine (GC) PER: Diversity, Equity & Inclusion II Examining Factors Related to Rural, First-Generation Student Persistence in STEM
5350 Perry Jonathan (GC) PER: Diversity, Equity & Inclusion II Developing Belonging and Purpose in Introductory Courses for Undergraduates
5477 Abdulrahman Falima (GC) PER: Diversity, Equity & Inclusion II Cultural Beliefs and Systemic Inequality in Astronomy Graduate Programs
5674 McKagan Sarah (EI) PER: Curriculum and Instruction III AICORN Physics Tutorials for building on seeds of science
5710 Chini Jacquelyn (PF) PER: Diverse Investigations II Modeling Pathways to Access in Physics Learning and Research Environments
5710 Chini Jacquelyn (PF) PER: Diverse Investigations II Qualitative Social Network Analysis and Applications in Physics Education Research
5710 Chini Jacquelyn (PF) PER: Diverse Investigations II Trajectories of Transfer Students Toward a Bachelor’s Granting University
5710 Chini Jacquelyn (PF) PER: Diverse Investigations II Using a Mixed Methods Approach to Study Complex Motivational Constructs
5710 Chini Jacquelyn (PF) PER: Diverse Investigations II Effectiveness of introductory physics laboratory courses in supporting learning goals
5762 Infransy Brent (PF) PER: Diverse Investigations II Changing Notation That Represents Force Changes How Students Say It
5782 4520 Ellis
4741 Tietto Sarah (IF) Sports Meets Physics I Tactile Reaction Training in Physics Classes
5892 5640 Maloney David (JA) How Curt Hoggekille Contributed to Physics Education II My Excellent Adventure with Curt (and Tom)
5892 5640 Maloney David (JA) How Curt Hoggekille Contributed to Physics Education II How Curt Shaped My Entire Career and PER
4811 Daubert Allison (JC) Methods of Remediation in the Intro Physics Classroom Resubmission Processes in University Lecture Classrooms
5112 5720 Piette Richard (JC) Methods of Remediation in the Intro Physics Classroom Revision and Remake: Authentic Engagement in the First-year Physics Laboratory
5112 5720 Piette Richard (JC) Methods of Remediation in the Intro Physics Classroom Modeling A Remediation Policy Focused on Developing Epistemic Knowledge
5460 Li Yangqiuqiu (JD) PER: Diversity, Equity & Inclusion III Inclusiveness of learning environment mediates gender differences in learning outcomes
5460 Li Yangqiuqiu (JD) PER: Diversity, Equity & Inclusion III To whom do students believe a growth mindset applies?
5340 Dow Matthew (JD) PER: Diversity, Equity & Inclusion III Equity in Student Equipment Usage for Remote and In-Person Labs
5422 Franklin Maxwell (JD) PER: Diversity, Equity & Inclusion III Developing a Python tool to Categorize Motivation of Undergraduate Women
5422 Coffe Camillie (JD) PER: Diversity, Equity & Inclusion III Identifying Academic Ableism: Case Study of a UDL-Learning Community Participant
5540 McPhadden Dylan (JD) PER: Diversity, Equity & Inclusion III Planning for Participants Varying Needs and Abilities in Qualitative Research
4970 Hofstra Mary (JD) PER: Student Content Understanding, Problem-Solving and Reasoning VI How often can students co-construct knowledge in student led websites?
4615 Akmenyi Abigail (JE) PER: Student Content Understanding, Problem-Solving and Reasoning VI Perspectives on Evaluation Strategies
5183 Anderson Audrey (JE) PER: Student Content Understanding, Problem-Solving and Reasoning VI Observations of Student Resources in Introductory Programming Tutorials
5491 Rosen Drew (JE) PER: Student Content Understanding, Problem-Solving and Reasoning VI Leveraging dual-process theories to improve student reasoning about air resistance
5392 Bott Theodore (JE) PER: Student Content Understanding, Problem-Solving and Reasoning VI Rotating Computational Thinking Practices and Problem Design Features
5711 Boulisaux Andrew (JE) PER: Student Content Understanding, Problem-Solving and Reasoning VI Adapting a dual-process informed intervention strategy across content domains
5315 Vigil Melissa (JF) PER: Student Content Understanding, Problem-Solving and Reasoning VI Swindles for Science
5379 Beverly Nancy (JF) Sports Meets Physics II Biomechanics Replacing Mechanics
5494 Johnson Joseph (JF) Sports Meets Physics II Hitting the Chairs: Disc Golf Physics
5894 Zengel Kyle (JF) Sports Meets Physics II Guttermills, Lip Out, and Swiffies
5308 Archibeque Benjamin (KA) Diversity, Equity, and Inclusion: Physics Education and Identities Critical Path Analysis of High School Physics Students' Identity
5592 Pollock Bria (KA) Diversity, Equity, and Inclusion: Physics Education and Identities Documenting the Impact of MRI on Physics and PER
5626 Lystymarko Otiena (KA) Diversity, Equity, and Inclusion: Physics Education and Identities Description of Experimental Features of Creating A Gradient Palladium-Hydrogen Alloy
5647 McDermott Liam (KA) Diversity, Equity, and Inclusion: Physics Education and Identities Political Disability Identity: A Framework for Physics Education Research
5978 Equity, Equality, and Inclusion: Physics Education and Identities Instructional Intervention on Ungrounding
5906 Lewandowski Heather (KB) Introductory Courses, Introductory Labs/Apparatus Student outcomes from a remote, large-enrollment, course-based undergraduate research experience
5916 Chaves Andy (KB) Introductory Courses, Introductory Labs/Apparatus CourseSource Physics: A new practitioner journal for physics educators
5269 Lagrange Joseph (KB) Introductory Courses, Introductory Labs/Apparatus A Capable Liquid Level Sensor for Application Based Labs
5334 Brewer Sherer Maggie (KB) Introductory Courses, Introductory Labs/Apparatus Modeling Ring Magnets: Non-linear, Damped Oscillators
5671 Stichler Carly (KB) Introductory Courses, Introductory Labs/Apparatus Next Gen PET in a lecture-lab format!
5662 Richardson Dean (KB) Introductory Courses, Introductory Labs/Apparatus Flipped vs. Traditional IPLS: Controlling the Control Variables
3666 Dobes Austin Student Perspective of Mini-Studio GTAs' Roles in Resolving Group Challenges (KA) PER: Student Support & Professional Development, Program and Institutional Effectiveness of Guided Retrieval Practice and Feedback on Physics Problem-Solving
3585 Bridges Bill (KC) PER: Student and Instructor Support & Professional Development, Program and Institutional Identifying Epistemic Frames in Faculty Discourse Centered around Ethics
5461 Garcia Tyler (KC) PER: Student and Instructor Support & Professional Development, Program and Institutional The Effect of Value-Focused Discussions on Scientists' Ethical Decision Making
5478 Angelou Katie (KC) PER: Student and Instructor Support & Professional Development, Program and Institutional A Paradigm of Repair for Group Work in Introductory Labs
5483 Alessandri Anne (KC) PER: Student and Instructor Support & Professional Development, Program and Institutional Identifying Learning Assistants’ Resources for Student-Centered Teaching
4328 Castiblanco Abril Jon (KD) PER: Student Content Understanding, Problem-Solving and Reasoning V Tools and Logic of Problem Solving in Physics
4709 Xu Tianmiao (KD) PER: Student Content Understanding, Problem-Solving and Reasoning V Effect of Guided Retrieval Practice and Feedback on Physics Problem-Solving
5268 Zich Raymond (KD) PER: Student Content Understanding, Problem-Solving and Reasoning V Investigating introductory student difficulties reading electric field diagrams
5268 Zich Raymond (KD) PER: Student Content Understanding, Problem-Solving and Reasoning V Making expert processes visible: how and why students use analogy
5662 Zhang Mumin (KD) PER: Student Content Understanding, Problem-Solving and Reasoning V Challenges and successes in reconciling different ideas during group work
5404 Yang Jun (KD) Physics Teaching Around The World Comparing introductory physics courses in the US and China
5580 Sticker Dean (KD) Physics Teaching Around The World Teaching Physics in Sub-Saharan Africa
5594 Castilbiano Abril Olga (KE) Physics Teaching Around The World (Cancel) Mathematization Of Physics for Teaching, From Phenomenology, Teaching anxiety through calomelometry: insights from Canadian and Israeli perspectives
5707 Richards Richard (KG) Physics Teaching Around The World Teaching Physics Teaching Physics in Sub-Saharan Africa
4631 Maier Steven (KF) Teaching & Supporting Future Teachers Using Next Gen PET Adult learning in a pre-service content course: Too soon?
5106 Snyder Jennifer (KF) Teaching & Supporting Future Teachers Using Next Gen PET Engaging Exams: Using Student Interviews and Engineering Design for Assessments
5214 Miller Edward (KF) Teaching & Supporting Future Teachers Using Next Gen PET Emergent outcomes from a faculty online learning community
5599 Guagliardi Nicole (KF) Teaching & Supporting Future Teachers Using Next Gen PET The NextGenPET Curriculum and Beyond: Integrating the Sciences
5260 Miller Paul (KF) Teaching & Supporting Future Teachers Using Next Gen PET Student Resistance in COVID: Advantages of a Hybrid Adaptation
5636 Wedding Crowell Kris (KF) Teaching & Supporting Future Teachers Using Next Gen PET Effectiveness of Next Gen PET online
5599 Snyder Tamara (KF) Teaching & Supporting Future Teachers Using Next Gen PET The results of Covid induced changes to a NextGenPET implementation
4790 Postiglione Jake (KG) Smart Phone-Based Labs Smart Physics: a path to innovate laboratory physics experiences
5656: Boehtig Thommy Lecture/Classroom Posters Applying the Tactic Reaction Training Theat in a Physics Classroom
5576: Falconer Kathleen Lecture/Classroom Posters (Naive) aerodynamic concepts in class & in-game –Flight Physics Concept Inventory
5577: Hen Sarah Lecture/Classroom Posters A streamlined Approach to the Introductory Physics Textbook
5602: Franklin Donald Lecture/Classroom Posters Physics for the Modern World
4489: Brandalge Mary Physics Education Research Posters Evolution of student conceptual understanding of electricity and magnetism
4496: Jakabarasaran Jakaibarasaran Physics Education Research Posters Gravity
4549: Mares Alexander Physics Education Research Posters Evolution in student conceptual understanding of energy and momentum
4550: Mares Alexander Physics Education Research Posters Self-efficacy, perceived recognition, interest and identity of physics majors
4564: Oork Surja Physics Education Research Posters Learning environment predicts women’s motivational beliefs in introductory physics courses
4567: Chrissten Stephanie Physics Education Research Posters How do new physics faculty teach? New Faculty Workshop Insights
4568: Li Yangqiu Physics Education Research Posters How inclusiveness of learning environment predicts students’ physics motivation beliefs
4572: Hsu Peter Poster Using Clicter Question Sequence to Teach Time-Development in Quantum Mechanics
4570: Coughing Sarah Physics Education Research Posters Students’ Types of Interest in Physics
4581: Malespina Alyssa Poster Female students’ self-efficacy benefits most from same-gender group work
4582: Malespina Alyssa Poster Does test anxiety explain gender differences in physics exam scores?
4616: m Jakabarasaran Department of Physics Education Research Posters New theory of earth gravity
4626: Zeng Liang Physics Education Research Posters (Cancal) A Skateboarding Experiential Learning Acitivity for Introdu
4741: Zu Tianlong Physics Education Research Posters Effect of Guided Retrieval Practice and Feedback on Physics Problem-Solving
4746: Santans László Physics Education Research Posters Negative impacts of an uncoupling physics environment on undergraduate women
4794: Whiten Christopher Physics Education Research Posters Module Analysis of Thel Bird Electricity and Magnetism Assessment
4643: Hewagattle Duna Physics Education Research Posters Exploring the factors affecting the expert-like scientific attitudes
5123: Gude Guido Physics Education Research Posters Scientific Argumentation in the Secondary Physics Classroom
5177: Amaral Camilla Poster Qualitative Social Network Analysis of Women and LGBTQ+ professional physicists
5153: Kusurimo Tunde Physics Education Research Posters Investigating Students’ Strengths and Difficulties in Quantum Computing
5154: Dancy Melissa Poster White male physicists’ sense-making around equity in STEM
5151: Wgiff Kyle Poster Development of a Likert-style Instrument to assess LA’s PCK-Q
5202: Johns Patrick Physics Education Research Posters Exploring the Reliability of Natural Language Processing Models Across Populations
5203: Kustina Jonathan Physics Education Research Posters Learning to Teach, Teaching to Learn: Peer Coachs and Metacognition
5210: Dovoloe Dany Physics Education Research Posters What supports the trajectories of white in physics education?
5222:Crosette Nate Physics Education Research Posters Social network analysis of student collaboration in pandemic-affected courses
5237: Jaryd Hope Physics Education Research Posters How student identity influences educational experiences in K-12 education
5248: Khong Hei Physics Education Research Posters Undergraduates develop their imagined future professional selves
5256: Young Nicholas Physics Education Research Posters Who answers complex multiple-choice questions in physics correctly?
5261: Annulations Allison Physics Education Research Posters Comparison of expertise like and scientific reasoning skills
5313: Omar Hady Physics Education Research Posters Understanding the impact of the Drew Science Scholars program
5330: Malve Camilla Poster Revolutionary Love help students navigate belonging to a science community?
5350: Myers Carissa Poster Investigating Measures of Self-Efficacy Disaggregated by Time
6441: Taylor Tiffiny Physics Education Research Posters Student Learning of Photoelectric Effect Using Simulations and Reflective Writing
5267: Miodoch Dawn Physics Education Research Posters Development of questions for the Physics Conceptual Evaluation (PCE)
5317: Davis Johos Poster Scientific Argumentation: The Complexity of Off-Sequence Course Progression
5380: Wixcox Bethany Poster Developing actionable feedback statements for research-based assessments
5396: Mathis Claudia Poster How Instructor’s Conceptions of Knowledge Bolster their Culturally Relevant Teaching
5397: Doaa Amani Physics Education Research Posters Connecting Climate Change to Your Energy Unit
5398: Modr Bahar Physics Education Research Posters Comparison of discussions in different online physics classrooms for educators
5432: Laczny Diana Physics Education Research Posters A survey for assessing instructional change teams in undergraduate STEM
5426: Kaufman Grant Physics Education Research Posters Student attitude changes and curricular benefits from two instructional interventions
5471: Stanley Bryan Physics Education Research Posters From volunteer to program leader: a career in informal physics
5532: Wires Uf Physics Education Research Posters Refining Assessment Questions Based on Critical Interviews
5540: Laverty James Physics Education Research Posters Supporting Instructors through Research Based Assessment
5451: Parisi Elizabeth Poster Developing a Physics Career Intervention Among Middle School Students
5506: Sasterle Vasilik Poster Reprising the Gendered Boxes of Science
5578: Garcia Tyler Physics Education Research Posters The Effect of Value-Focused Discussions on Scientists’ Ethical Decision Making
5597: Chadles Adrianna Poster Student Perspectives on Social Justice and Equity in STEM
5591: Zanariaga Roman Poster Analyzed explorations of personal support networks: a cross-case analysis
5606: Falconer Kathleen Poster The unfurled roles of mentors and tutors in Learning-by-Teaching models
5603: Witon Alyson Poster Operationally Academic Integration for Post-Transfer Students: Discussing Quantitative Factors
5641: Dalka Robert Poster Growing as a change agent: Shifting down and facilitating teams
5610: Dalka Robert Poster Student roles in faculty-student partnerships
5610: Dalka Robert Poster Network analysis of Likert-style surveys
5632: Meyer Josephine Poster Investigating student interpretations of difference between classical and quantum computers
5635: Place John Poster Machine Learning Techniques for Classifying Physics Performance