Session Topics for the 2021 AAPT Virtual Winter Meeting
(This list is subject to change)

1. 21st Century Physics in the Classroom
2. A More Healthy Option
3. An introductory high school/university course in scientific programming
4. Apparatus for Teaching Modern or Contemporary Physics
5. Applied improvisation for physics
6. Applying Network Analysis to Physics Education
7. Architecture of Glowscript Python
8. Assessing and Promoting Pedagogical Content Knowledge of Undergraduate Teaching Assistants
9. Astrobiology & Exoplanets
10. Astronomy Research Seminar
12. Bringing Students into the 3rd Dimension
13. B-sides and Bloopers from Famous Physicists
14. Building a STEM-Wide Culture of Change
15. Built-In Assessments
16. Call for Increased Investment in Accessible Physics Laboratory Courses
17. Career Paths for PER students (undergrad to grad and after)
18. Citizen Science in the Classroom
19. Coding Integration in High School Physics Courses
20. Coming to America - Teaching from different perspectives
21. Curriculum Swap: Creating, Sharing, and Improving Student-centered Physics Activities for Life Science Students
22. Do it yourself Sustainable Gamma Ray Detectors
23. E-Alliance Network
24. Effective Practices in Educational Technology
25. Engaging Ways to Introduce Students to Quantum Physics
27. Equity in the Faculty and Post-doc Hiring Process
28. Fun and Engaging Labs
29. Get the Facts Out
30. Higher education in the age of Artificial Intelligence
31. Highlights of Astronotes
32. Holistic Graduate School Admissions and Support for Graduate Students
33. Ideas for Promoting Student Retention
34. Improving the Pedagogical Content Knowledge of Teaching Assistants and Instructors
35. International Conference in Women in Physics
36. Mastery-based grading
37. My Favorite Vernier Product
38. NGSS & 3-Dimensional Teaching & Learning in Physics
39. Paradigms in Physics Potpourri
40. Physics Education from Around the World
41. Physics Programs at HSIs/MSIs
42. PhysTec in 50 States
43. PICUP: Cool Computational Stuff!
44. PICUP: Exercise Sets for teaching E&M
45. PICUP: Exercise Sets for teaching mechanics
46. PICUP: Integrating Computational Activities into Introductory (including High School!) Physics
47. PIRA Lecture Demo Workshop 1&2 Condensed
48. Planetaria in Astronomy Education
49. POGIL and teaching methods from other disciplines
50. Preserving Your Legacy: Oral Histories of AAPT and Physics Education
51. Professional Skills for Students
52. PTRA presents Perimeter: Climate
53. PTRA: Connecting Resources and Collaborating Across HS, TYC, & FYC
54. Pulsar Search Collaboratory for High School Teachers
55. Quantum Information / Quantum Computing in the Classroom
56. Recent Developments and Perspectives in Research on Student Reasoning
57. Recruitment, Preparation, Retention of Teachers from Underrepresented Backgrounds
58. Research on equity and inclusion beyond physics
59. Research-based Introductory Labs for Mechanics and E&M: Curriculum and Implementation
60. Researcher Identity/Positionality in Contrast to the Research
61. Resources for Teaching Physics Using Space Science Content
62. Ring Flinger - Make and Take
63. Seeing the Invisible: Using JS9 Data and Image Analysis In Educational Settings
64. STEAM Education: What is the international State of Discussion?
65. Strategies for Coping and Self-care related to Remote/Hybrid Physics Teaching (all levels)
66. Student Topical Discussion & Social
67. Student Understanding of Measurement and Uncertainty
68. Success Stories of Female Physicists
69. Support for Unprotected Faculty and Teachers
70. Surviving Administrative Initiatives
71. Teaching Physics Toward Social Justice
72. Teaching Science in a Culture of Mistrust
73. Teaching the Introductory Physics for the Life Sciences (IPLS) course
74. Teaching with your mouth closed: basic POGIL strategies for middle school and high school physics teachers
75. Technology Playground
76. Things We Will Keep from Remote Experiences in Teaching Physics Labs/courses
77. Using Big Data and Machine Learning Understand Physics Outcomes
78. Using popular media, like cartoons
79. What to Say When Your Students Ask You about Condensed Matter
80. What's New in Data Collection and Analysis