USING PHYSLETS AND EASY JAVA SIMULATIONS TO TEACH PHYSICS AND ASTRONOMY

OSP COMPADRE: <u>WWW.COMPADRE.ORG/OSP/</u>

Mario Belloni

Davidson College

Wolfgang Christian, Doug Brown, Anne Cox, Francisco Esquembre, Harvey Gould, Todd Timberlake, Jan Tobochnick and Kristen Thompson

0

This work is supported by the National Science Foundation (DUE-0442581, DUE-0126439, and DUE-9752365)

Today

Brief description/demo of tools.

- Explore OSP site/materials
- Discussion of how to use.

OSP Resource Overview

Open Source Physics: <u>www.compadre.org/OSP/</u>

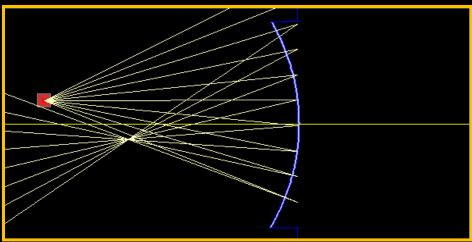
- Physlet Physics 2E: <u>www.compadre.org/Physlets</u>
- Physlet Quantum Physics 2E: www.compadre.org/PQP
- Tracker Video Analysis Tool: <u>www.cabrillo.edu/~dbrown/tracker/</u>
- Easy Java/JavaScript Simulations (EJS/EjsS): <u>fem.um.es/Ejs/</u>

Our Group

- OSP Java Code: Wolfgang Christian
- EJS: Paco Esquembre and Felix Garcia
- ComPADRE: Bruce Mason, Matthew Riggsbee, and Lyle Barbado
- Java and JavaScript Simulations: MB, WC, Todd Timberlake, and Michael Gallis
- *Physlet Quantum Physics* 2E : Anne Cox, MB, WC
- Intro Astronomy eBook: Kristen Thompson, MB

How can we use simulations in teaching physics?

 User: Students access pre-made simulations that (hopefully) they must interact with.


Modeler: Students are given access to a software package with a simple user interface. Students must then simulate the physics of a problem by modeling at a high level of abstraction. For example, adding the physics in the form of differential equations (rates of change) and initial conditions.

Programmer: Students are given tools to program a physics example using traditional computational physics techniques.

Simulation Terminology 101

- Java: Programming language for simulations. Simulations can be run as stand-alone archives (jars) or as applets. All Java applets will cease to work in March 2017. All desktop Java applications will continue to function.
- JavaScript: Scripting language created in 1995 and is part of the HTML5 standard.
- HTML5: Markup language standard for the Web going forward. Supports JavaScript, CSS, etc. Does not support Java.

JiTT Example: JS Physlet

A point source is located to the left of a mirror. You can click-drag the point source to any position **(position is given in centimeters)**.

- 1. Find the focal length of the mirror.
- Describe the technique(s) you used to determine the focal length.

OSP ComPADRE search: Focal Length JS Mass and Spring Simple Harmonic Oscillator JS Model

Our Approach

Open Source Physics (OSP) **Project** provides curriculum resources and tools that engage students in astronomy & physics, computer modeling, and computation with the goal of providing students with new ways to understand, describe, explain, and predict physical phenomena.

- One Java application....one Java simulation.....one idea/one concept.
- One HTML pageone JavaScript simulation.....one idea/one concept.
- One eBook pageone JavaScript simulation.....one idea/one concept.

How can we use simulations in teaching physics? Pedagogies?

User: Students access pre-made simulations that (hopefully) they must interact with.

Modeler: Students are given access to a software package with a simple user interface. Students must then simulate the physics of a problem by modeling at a high level of abstraction. For example, adding the physics in the form of differential equations (rates of change) and initial conditions.

Programmer: Students are given tools to program a physics example using traditional computational physics techniques.

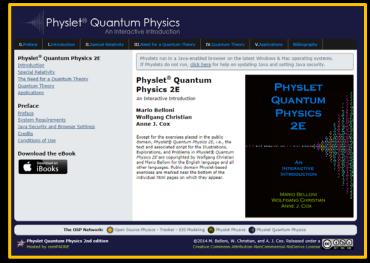
Coupling Simulation with Pedagogy

User: Students access pre-made simulations that they must interact with.

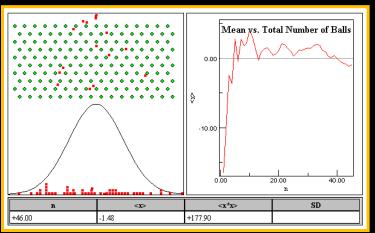
Pedagogies:

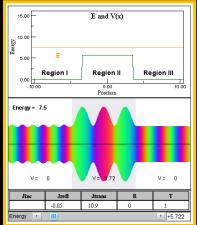
- Peer Instruction / Think-Pair-Share / Clickers
- Just-in-Time Teaching
- Guided Inquiry/Tutorial
- Group Problem Solving
- Lecture Demonstration
- TIPERs (Ranking Tasks, etc)
- In-class Exercise
- Homework
- Laboratory Exercises (pre-lab, in-lab, post-lab)
- Etc.

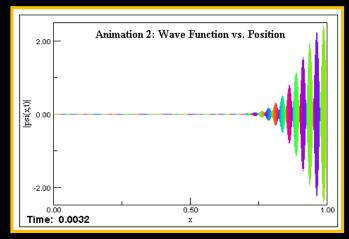
1,000 PHYSLET-BASED EXERCISES ON COMPADRE

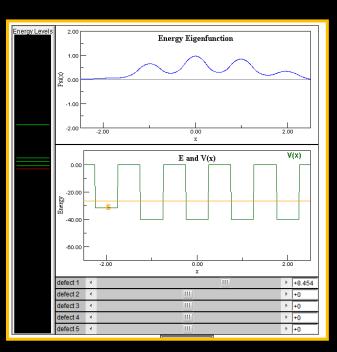

Physlets — "Physics applets" — are small, flexible Java applets that are ...

www.compadre.org/Physlets

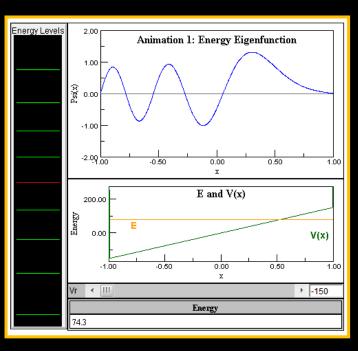

Visual and interactive Flexible (modular and scriptable) Uniform User Interface Pedagogically adaptable Web based with Java-enabled browser (e.g., IE, Safari, Firefox, Opera). Free for noncommercial use.

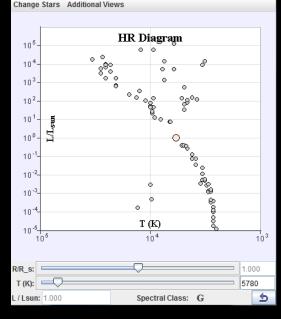

www.compadre.org/PQP




2017: Much of the 1,000 pieces of curricular material: HTML5

PQP 2E on ComPADRE





- sp. relativity
- modern physics
- classical/qm
- eigenfunction shape
- time evolution
- scattering
- non-standard qm wells
- atomic physics
- stat mech

OSP/EJS Astronomy Simulations

Over 50 stand-alone Java programs for intro astronomy on OSP Collection on ComPADRE Also organized in M.B. Astro Filing Cabinet

Shared Folders

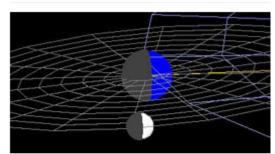
Astronomy 105 (2 resources, 14 subfolders)

Materials in Support of a College-Level Introductory Astronomy Course at Davidson College.

A survey of the current scientific view of the Universe. Emphasis on the physical and mathematical principles necessary to understand how astronomers observe and interpret phenomena. Topics include the historical development of major astronomical theories, the interaction of light and matter, the life cycle of stars, and the structure and evolution of the Universe. No laboratory.

Astronomy 105 Course Home Page

This website is the course homepage for the Davidson College Astronomy (PHY 105) course from the Spring of 2012 taught by Mario Belloni. Many of the following materials were used in the teaching of this course during the spring of 2012.


Davidson College Astrophotography Project

For the past year, as part of teaching the astronomy class (PHY 105), we have been taking astrophotographs. Follow the link to see both our personal and student photos taken in Davidson, NC either on campus or at the Pine Road Observatory.

.

Featured Curriculum Package

Introductory Astronomy Models

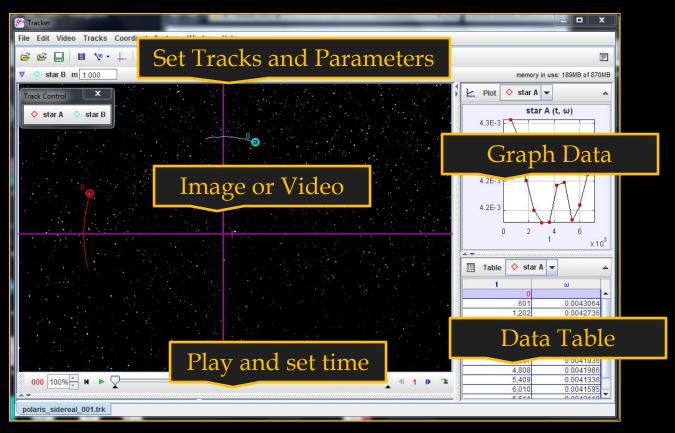
A shared file folder of Astronomy models designed for a college-level introductory astronomy course. This shared folder contains over 50 EJS models and is broken up into three parts: naked-eye astronomy, classical astronomy (optics and orbits), and modern astronomy.

website

Copy selected into:

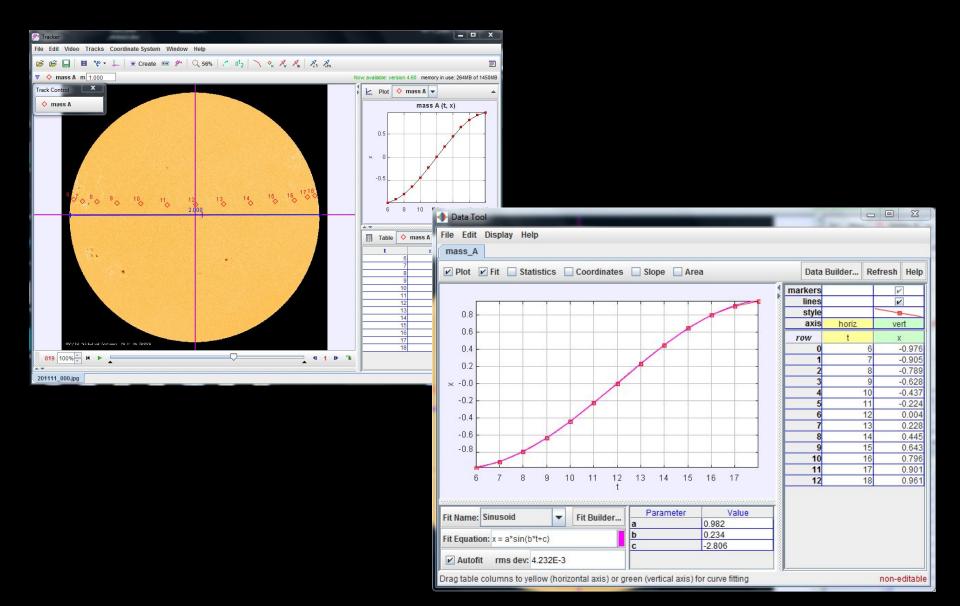
Astronomy 105 Subfolders

- L in Naked Eye Astronomy (12)
- L→ Coptical (Classical) Astronomy (0)
 - L→ 🛅 <u>Solar System Models</u> (10)
 - L→ <u>Orbits</u> (7)
 - ↓ 🗋 <u>Optics</u> (11)
- L in Modern Astronomy (0)
 - └→ in <u>Stars and Stellar Properties</u> (6)
 - L→ Carallar Aberration and Parallax (5)
 - L Carte (2)
 - L→ <u>Galaxies</u> (9)
 - → Ceneral Relativity (5)
 - ↓ 🛅 Classical Simulations (3)
 - L+ C Schwarzschild Metric Simulations (9)
 - 4) La Carte Contraction (4)


How can we use simulations in teaching physics?

 User: Students access pre-made simulations that (hopefully) they must interact with.

Modeler: Students are given access to a software package with a simple user interface. Students must then simulate the physics of a problem by modeling at a high level of abstraction. For example, adding the physics in the form of differential equations (rates of change) and initial conditions.


Programmer: Students are given tools to program a physics example using traditional computational physics techniques.

Tracker

OSP-based free and open source (hmm..) video analysis program. On the OSP Collection there are numerous examples from Angry Birds to solar rotation rates, plus students can take their own videos.

Tracker: Solar Rotation

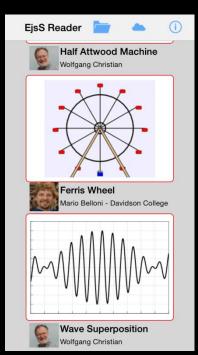
How can we use simulations in teaching physics?

 User: Students access pre-made simulations that (hopefully) they must interact with.

Modeler: Students are given access to a software package with a simple user interface. Students must then simulate the physics of a problem by modeling at a high level of abstraction. For example, adding the physics in the form of differential equations (rates of change) and initial conditions.

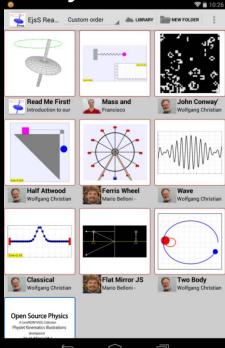
Programmer: Students are given tools to program a physics example using traditional computational physics techniques.

EJS/EjsS Creating Java and JavaScript Simulations


To create Java and JavaScript (HTML5 compliant) simulations we use the EJS/EjsS Tool

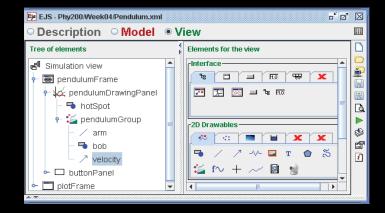
- New EjsS creates both Java and JS simulations
- Currently converting PP2E to JavaScript (2017)
- To see examples (>200) of JS simulations: <u>www.compadre.org/osp</u> search "JS" for JavaScript

JavaScript Simulations

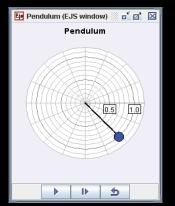

While our JS simulations run on any JS-enabled browser, the easiest way to browse material is with the EjsS Reader App on iPad & Android.

In the Apple AppStore and Google Play Store

search for "ejss"



Reader App (Apple)


Reader App (Android)

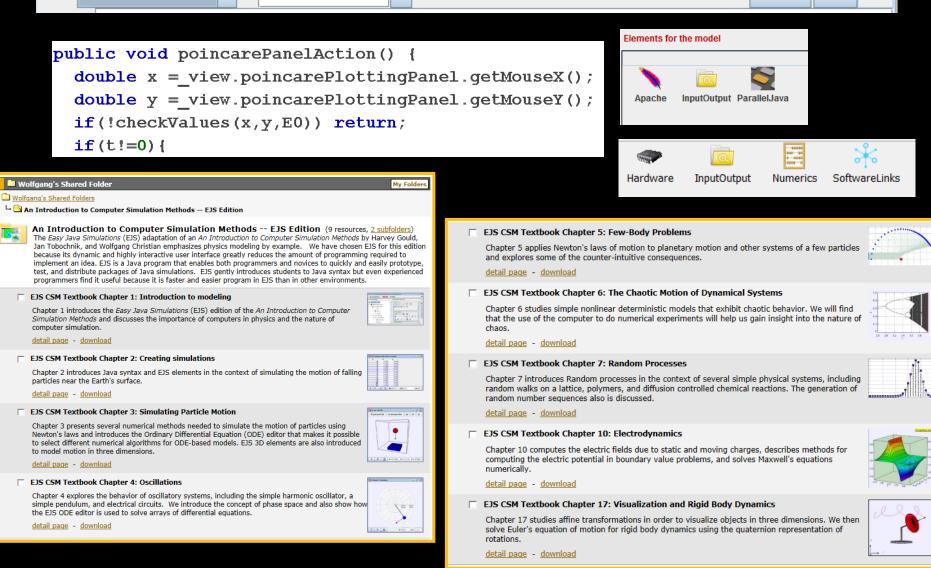
Creating an EJS Simulation

Ejs - Phy200/Week04/Pendulum.xml						\boxtimes
○ Description ● Model ○ View						
● Variables ○ Initialization ○ Evolution ○ Fixed relations ○ Custom						
Dynamic Vars C	c Vars Constants Auxiliary Vars					
						<u>P</u>
Name		nitial value		ype	Dimension	
t	0.0		double			_
dt	0.1		double			H
theta	0.75		double			D.
omega	0.0		double			
						۲
						ř
						i
Comment						
Page comment						

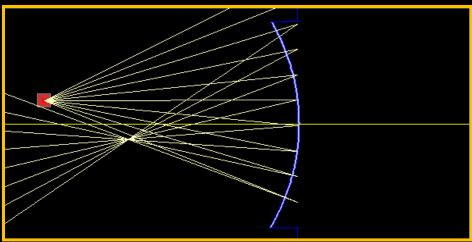
Easy Java Simulations: (EJS) is free open source software that is designed to create interactive simulations in Java (applications and applets) without the necessity of prior programming knowledge.

The advantage of EJS for physics teaching is it separates the model into logical parts (variables and evolution) and it separates the model from the view (the visualization of the simulated model).

EJS Simulation in 5 Minutes


Ready, Set, Go...

Computational Physics


@

Solver Cash-Karp 5(4)

Tol 0.00001

JiTT Example: JS Physlet

A point source is located to the left of a mirror. You can click-drag the point source to any position **(position is given in centimeters)**.

- 1. Find the focal length of the mirror.
- Describe the technique(s) you used to determine the focal length.

OSP ComPADRE search: Focal Length JS Mass and Spring Simple Harmonic Oscillator JS Model

OSP Resource Overview

Open Source Physics: <u>www.compadre.org/OSP/</u>

- Physlet Physics 2E: <u>www.compadre.org/Physlets</u>
- Physlet Quantum Physics 2E: <u>www.compadre.org/PQP</u>
- Tracker Video Analysis Tool: <u>www.cabrillo.edu/~dbrown/tracker/</u>
- Easy Java/JavaScript Simulations (EJS/EjsS): <u>fem.um.es/Ejs/</u>

Why might we want to use simulations in teaching physics?

Colliding Galaxies: The Mice

What Level of Course?

- Non-Science Major/Astronomy
- Introductory Physics and Astronomy
- Major-Level Courses
- Introducing Current Research into Courses

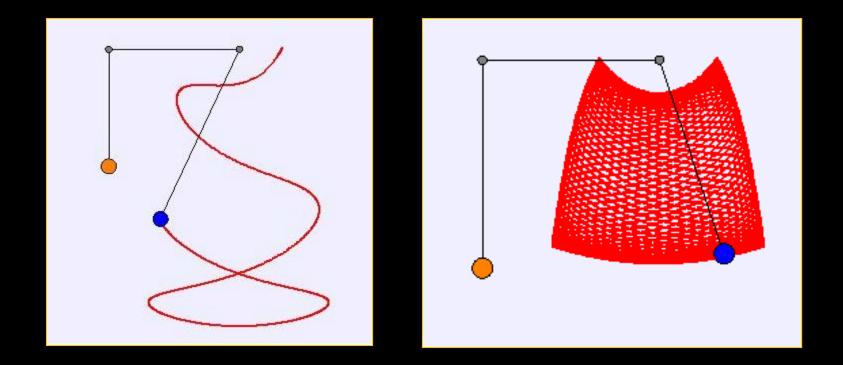
But expectations, outcomes, and scaffolding are different

What version you use will be related to the course you are teaching, your student body, and your expertise.

In general...

...the less sophisticated the student, the more sophisticated the user interface ...and the more interactive, the better....

...keeping in mind that technology without pedagogy... ...is just technology.



OSP: Coupling Simulation with Pedagogy

Modeler: Students (intro, **classical mechanics**, computational physics) are given access to a software package with a simple user interface. Students simulate the physics of a problem by modeling at a high level of abstraction. For example, adding the physics in the form of differential equations (rates of change) and initial conditions.

- **Tracker:** is a free and open source video analysis software program.
- Easy Java Simulations: (EJS) is free open source software that is designed to create interactive simulations in Java (applications and applets) without the necessity of prior programming knowledge to quickly and easily prototype, test, and distribute packages of Java simulations. EJS allows students, teachers, and curriculum authors to easily write and/or change simulations. Can also be used to teach computational physics.

Example of Computational Physics and Experimental Physics: The Swinging Atwood's Machine

[SAM Simulation] [SAM Video] [fSAM Simulation]

On OSP ComPADRE

Open Source Physics Resources and Tools

Open Source Physics (OSP) **Project** provides curriculum resources and tools that engage students in astronomy & physics, computer modeling, and computation with the goal of providing students with new ways to understand, describe, explain, and predict physical phenomena.

- The <u>OSP Collection</u> is a ComPADRE repository where >500 EJS (Java & JavaScript) models and curricular materials are organized & shared.
- Physlets are small interactive Java applets that are designed for the teaching physics in a web environment. Physlet Physics 2E is an integrated curriculum of over 800 items spanning the introductory physics sequence. Physlet Quantum Physics 2E contains over 200 items covering modern physics through advanced quantum theory. All 1,000 exercises in these two collections are being converted to JavaScript.
- Easy Java Simulations (EJS) encourages modeling and authoring with basic programming in Java and JavaScript. EJS removes many of the complicated tasks involved in integrating computation into the classroom allowing students and teachers to focus on the science.
- <u>Tracker</u> video analysis and modeling tool analyzes video clips. Students can both analyze the motion of objects and overlay simple models on the video & see how the model matches the real-world.