USING PHYSICS LABS TO TEACH EXPERIMENTATION AND CRITICAL THINKING

NATASHA G. HOLMES
CORNELL PHYSICS EDUCATION RESEARCH LAB
LABORATORY OF ATOMIC & SOLID STATE PHYSICS
PHYSICS DEPARTMENT, CORNELL UNIVERSITY
LEARNING GOALS

By the end of this session, you should be able to:

• List learning outcomes for lab instruction about experimentation,
• Describe fundamental principles for teaching experimentation skills, and
• Identify instructional decisions to implement those fundamental principles.

All our materials are on PhysPort.org/curricula/thinkingcritically
COMPLETE THIS SENTENCE:

MY INTRO PHYSICS LABS WERE...
Forgettable
Big picture (What and why)

Choose your own adventure:
- What we do
- Design a lab
- TA training
- Grading…
HOW DO WE DO EXPERIMENTS IN PHYSICS?

ANSWER THE QUESTION WITH YOUR NEIGHBOR
TRADITIONAL ‘VERIFICATION’ LABS

Highly structured

Confirmatory
No measurable added value to learning content

Deteriorate student attitudes towards experimental physics

THE THING ABOUT VERIFICATION LABS

Holmes & Wieman (2018); Holmes, Olsen, Thomas & Wieman (2017)
15. To better investigate the model, what should the Group 2 students do next?

16. Why should they do this?

I HATE labs. Theoretical only.
AAPT Recommendations for the Undergraduate Physics Laboratory Curriculum

Report prepared by a Subcommittee of the AAPT Committee on Laboratories
Endorsed by the AAPT Executive Board
November 10, 2014
WHAT IS CRITICAL THINKING?

The ways in which you make decisions about what to trust and what to do.
**ACTIVITY: MODEL TESTING**

Does the period of a pendulum differ when released from different amplitudes (10° and 20°)?

\[ T = 2\pi \sqrt{\frac{L}{g}} \]

Handout:

- Make a plan, discuss plan with another group, carry out plan.
- Find ways to improve plan, discuss improvements with another group, carry improved plan out.
Make a comparison

Act on comparison

Reflect on comparison

Designing to reduce uncertainty, or follow-up and extend investigation

Quantitative, with uncertainty
LAB QUESTION:
Does the period of a pendulum differ when released from different amplitudes (10° and 20°)?

\[ T = 1.84 \pm 0.08 \, \text{s} \quad \text{vs} \quad T = 1.81 \pm 0.08 \, \text{s} \]

\[ \text{Diff} \sim 0.2\sigma \]

**Case study:**
- Measure time for single period, \( T \)
- Repeat 10 times, find average, standard error

What might a difference of 0.2σ mean?

$$t' = \frac{T_{10^\circ} - T_{20^\circ}}{Uncertainty}$$

Small difference means values are close
AND/OR
uncertainty is large
WHAT DID THEY DO NEXT?

- Measure time, $t$, for 20 periods
- Divide by 20 to get period, repeat average, standard error…

\[ T = 1.830 \pm 0.004 \text{ s} \quad T = 1.851 \pm 0.004 \text{ s} \]

\[ t' \sim 3.7\sigma \]

Case study:

The opposite of the expected happened:

\[ \frac{\text{time}}{3} \Rightarrow \text{measured values are different} \]

**Conclusion:**

The period of a pendulum does depend on the angle with the vertical in the initial position.

The algebraically derived formula for \( T = 2\pi \sqrt{\frac{L}{g}} \) of a pendulum is only valid for small angles.

Considering the results of this experiment, 20° is obviously not small enough since the angle has an effect on the period \( T \) and should be somehow represented in the formula.

If you can make a precise enough measurement, you can show that the theoretical derivation of the equation of motion for a pendulum is just a good approximation and reality is slightly more complicated.
PERIOD AS A FUNCTION OF ANGLE

![Graph showing the relationship between period and angle. The x-axis represents angle in degrees (0 to 100), and the y-axis represents period in seconds (1.3 to 1.7). The graph plots data points indicating an increase in period as the angle increases.]
“The pendulum experiment we did at the beginning of the year, I think that really made a mark on me. Because I went in there expecting it [the period at 10 and 20 degrees] to be the same, because that’s what I was taught. And then, when you finally figure out that, ‘oh, it’s supposed to be different,’ and then I was like, ‘Oh! I probably shouldn’t be doing experiments with bias going in.’”
PLAN

Big picture (What and why)

Choose your own adventure:
- What we do
- Design a lab
- TA training
- Grading…

Hands-on example (How)

Case study (How)
CRITICAL THINKING STRUCTURE

Period of pendulum at 10 and 20 degrees

Make a comparison

Act on comparison

Reflect on comparison

Find ways to reduce uncertainty
Identify model limitation

Difference small: uncertainty large?
Difference large: Model limitation?
• Comparisons help students make sense of results
• Agency and freedom to make decisions (and mistakes)
• Feedback and support to learn from decisions
• Opportunities and time to revise and improve
• Situations where:
  • Physics isn’t ‘perfect’ (deal with disagreements)
  • Students don’t know the answer
  • Instructors don’t know the answer

Gick & Holyoak (1980, 1983); Bransford et al. (1989); Ericsson et al. (1993); Bransford & Schwartz (1999); Kapur (2008)…
A NOTE ON STRUCTURE

Traditional
- Goal defined
- Specific equipment provided
- All experimental decisions made

Full open-ended
- No goal defined
- Room full of equipment provided
- No experimental decisions made
CORNELL INTRO LAB LEARNING GOALS:

By the end of the three-course intro lab sequence, students should be able to:

1. Collect data and revise the experimental procedure iteratively, reflectively, and responsively,
2. Evaluate the process and outcomes of an experiment quantitatively and qualitatively,
3. Extend the scope of an investigation whether or not results come out as expected,
4. Communicate the process and outcomes of an experiment, and
5. Conduct an experiment collaboratively and ethically.

Visit cperl.lassp.cornell.edu for the full list
LAB ACTIVITIES

**Mechanics:**
1. Model Testing (Pendulum)
2. Model Testing & Ethics (Objects in flight)
3. Model Testing & Extending (Hooke’s law)
4. Project Lab

**E&M:**
1. Model Building (Electrostatics)
2. Model Building & Testing (Circuits)
3. Model Building & Design (Faraday’s Law)
4. Model Building & Predicting (Magnetic Fields)
5. What does this thing do (LEDs)

**Waves & Optics:**
1. What is this data? (analysis review)
2. Diffraction
3. Project Lab (5-6 weeks)
GRADING

Three components:
1. In-lab check-in (group)
2. Lab notes (group)
3. Post-lab exercise (individual)

Students also complete in-lab worksheets (individual, but ungraded). These are mostly to keep students on task.
HOW TO ASSES THE LABS 
(NOT THE STUDENTS)

- PLIC: closed-response assessment of students’ critical thinking skills in context of intro physics labs
  - cperl.lassp.cornell.edu/PLIC
- E-CLASS: survey of students’ attitudes and beliefs about experimental physics
- CDPA: multiple choice test of student understanding of data analysis
- Physics Measurement Questionnaire: open-response assessment of student understanding of uncertainty and measurement
Use Socratic questioning – don’t give students an “answer”

Provide *some* feedback and guidance – offer multiple suggestions that students can choose from

Formalize the “check-ins” – encourage students to ask each other for help with technical stuff

Buy-in is hard – like all new forms of teaching, but this one shifts the goal as well as the method
THE BIG THINGS:

• Change the goals to focus on **process** rather than **product**

• Spread labs over **multiple sessions**

• Give students some **agency**
THE BIG THINGS:

• Change the goals to focus on process rather than product
  – Narrow and focus goals per lab
  – Grade for their decision-making, not their result

• Spread labs over multiple sessions
  – Give them time to go deep in a few experiments

• Give students some agency
  – Remove some of the structure and let students make decisions in a constrained space
  – Use experiments where students don’t know the “answer” so they use experiment for discovery, not confirmation
  – Use experiments where the result is surprising
LEARNING GOALS:

By the end of this session, you should be able to:

• List learning outcomes for lab instruction about experimentation,

• Describe fundamental principles for teaching experimentation skills, and

• Identify instructional decisions to implement those fundamental principles.

All our materials are on PhysPort.org/curricula/thinkingcritically
RESOURCES

Our webpage: cperl.lassp.cornell.edu
PhysPort: PhysPort.org/curricula/thinkingcritically
Contact me: ngholmes@cornell.edu
Other materials also at: sqilabs.phas.ubc.ca

Citations:
Holmes, N. G., & Smith, E. M. (2018). Operationalizing the AAPT Learning Goals for the Lab (accepted to The Physics Teacher)

Thank you!!