Digital Libraries

Get out your Internet Enabled Device
https://www.physport.org/assessments/

Open the “FCI” - “Login or Register”

IF you haven’t done so: “Register Now”
AAPT member OR Not AAPT Member

AAPT regular member?

not an AAPT regular member?

Get instant access! Use your account with the American Association of Physics Teachers:

AAPT Member ID: ____________________ Forgot your AAPT member number or password?
AAPT Password: ____________________

Bruce Mason: bmason@ou.edu
Sam McKagan: sam.mckagan@gmail.com
What are We Doing?

1. Do *not* re-invent the wheel

2. Hands-on time with examples that *you* can use

3. Process, Discuss, Ask
www.physport.org/assessments

From your Homework:

• Thoughts on the FCI

• Assessment(s) you could use in the next semester(s)
www.physport.org

Explore & Discuss:

Expert Tips: “How To”

Teaching methods you want to know more about

Workshops
Digital Library: Collections of web-accessible materials (Links)

Examples:
http://www.compadre.org/Books/NFWDL

1. Explore your interests
2. Find something you might use
3. Find a new modality
4. Share with your neighbors
Submitted/Selected Vetted Details Search Browse

PhET Simulation: Projectile Motion
published by the Physics Education Technology Project

This webpage contains a simulation that allows the user to fire various objects out of a cannon. By manipulating angle, initial speed, mass, and air resistance, concepts of projectile motion are illustrated. This page also contains user-submitted suggestions of ideas and activities for this simulation.

This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments in which students learn through exploration. All of the simulations are freely available from the PhET web site for incorporation into classes.

http://phet.colorado.edu/en/simulation/projectile-motion

Subjects

Classical Mechanics
- Applications of Newton’s Laws
- Motion in Two Dimensions
 - Projectile Motion

Levels

- Lower Undergraduate
- High School
- Middle School

Intended Users

- Learners
- Educators

Resource Types

- Instructional Material
 = Activity
 = Interactive Simulation

Related Materials

- Is Part Of PhET: Physics Education Technology
- Is the Basis For pnet.colorado.edu/
- Is the Basis For pnet.colorado.edu/

Similar Materials

- Walter Fendt Physics Applets: Projectile Motion
- NTNU Java: Two cannons aim at each
Putting together your stuff in a Personal Collection
Starting point for your own Books

Personal Collection

1) Find Stuff ...
2) File Stuff ...
3) Keep Stuff for Later ...
4) Share Stuff ...

Website Detail Page

CWSEI: Clicker Resources

This resource website on effective use of personal response systems or "clickers" contains many helpful links, including quality clicker question banks, articles, an instructor resource guide, handouts for workshops, and links to videos.

These resources part of the education and professional development work of the Science Education Initiative at the University of Colorado and the Carl Wieman Science Education Initiative at the University of British Columbia.

http://www.cwsei.ubc.ca/resources/clickers.htm

Manage Record

PSRC Status: A
Control Menu
Documents
Standards
Merlot
SERC

Save this record to my filing cabinet: X
Private Folders

Save to my folders

Search Term: electrostatics
Results #11-#20 of 77

1. 2-D Electrostatics Applet
 - Post a comment
 - Save this resource
 This Java applet illustrates electrostatic fields and potentials and static current distributions in two dimensions. It offers a broad range of interactive simulations, from simple.
 http://www.falstad.com/emstatic/

2. Ben Franklin Experiments on Electrostatic Induction
 - Post a comment
 - Save this resource
 This item is part of a set of mini-lecture guides for high school physics teachers exploring Benjamin Franklin's historic experiments. This page focuses on the topic of...
Research-Based Resources

Intro Undergrad Resources

Open Source Modeling

Adopt: Outreach

PER Community

Quantum

Advanced Labs

Intro Physics for Life Sciences: compadre.org/ipls

Upper Division Curriculum: compadre.org/supc
“Library”

1. **Circus Physics: Conservation of Angular Momentum**
 - Details: Post a comment, Save this resource, Relations, Standards, Control Menu
 - This video-based resource examines conservation of angular momentum through the motion of an acrobat doing aerial flips. It explores how a tasked position decreases the acrobat’s...[link]

2. **Teaching About Impulse and Momentum**
 - Details: Post a comment, Save this resource, Relations, Control Menu
 - This AAPT/FTRA manual on Teaching about Impulse and Momentum contains background and activities to help students with this topic. Samples from the full print manual are available.[link]

3. **Modular Approach to Physics: Colliding Planets**
 - Details: Post a comment, Save this resource, Control Menu
 - This simulation illustrates conservation of momentum through the collision of two masses. The user can adjust the masses of the planets and observe that they always will collide at.[link]

4. **The Physics Classroom: Car and Truck in Head-on Collision, Inelastic Collision**
 - Details: Post a comment, Save this resource, Control Menu
 - This web page features an animated image and a discussion of momentum conservation. The animated gif shows an inelastic head-on collision between a car and a truck, with information.[link]

5. **Two Particle Elastic Collision Model**
 - Details: Post a comment, Save this resource, Relations, Standards, Control Menu
 - The EIS Elastic Collision Model allows the user to simulate a two-dimensional elastic collision between hard disks. The user can modify the mass, position and velocity of each disk...[link]

6. **Matter & Interactions Practice Problems: Interactions and Motion**
 - Details: Post a comment, Save this resource, Relations, Standards, Control Menu
 - These web pages contain problems to supplement the introductory textbook, Matter and Interactions by Ruth Chabay and Bruce Enzminger. These problems are selected from Chabay and...[link]