
Physics Challenge for Teachers and Students 

Solution to the January, 2017 Challenge, The January joints. 

 

I will make two assumptions in interpreting the wording of the problem. First, I will 

assume the spring has a relaxed length l equal to the diagonal of the square. That is, if L is the 

length of a rod, then 1/22l L . If that were not true, the assembly would not adopt the shape 

of a square when it is initially ―placed‖ (presumably without hands holding it in shape) on the 

table. Second, I will assume that when the problem asks about the ―original position‖ of the 

mass, the intended position is that shown in the diagram in the problem statement, i.e., before 

m is pulled diagonally away from point A. In that case, the requested time t is one-quarter of 

a period, i.e., / (2 )t  where  is the angular frequency for small oscillations of the 

system. (If instead the ―original position‖ means the release point of the mass, then the 

requested time is a full period, four times longer than the answer I report here.) 

It will be shown that /k m  and thus the solution to the problem is 
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Here are three methods of proving that  has this form, in increasing order of complexity. 

 

Method #1:  By symmetry, as the two ends of the spring oscillate toward and away from the 

center of the square, the other two vertices of the square (to which m and A are attached) 

oscillate in the same way (relative to the center of the assembly) except for being 180° out of 

phase. (In other ways, when the spring ends move inward, the mass moves outward, and vice 

versa.) Therefore the motion would be unchanged if we instead connected the spring between 

m and point A. (As will be shown by the next two methods, it turns out that this statement is 

rigorously true only for small amplitudes of oscillation.) But then the rods no longer play a 

role. Discarding them, we simply have the standard oscillation of a mass m on a spring k, 

giving the angular frequency reported above. 

 

Method #2:  Consider an instant when the length of the spring is x, and the distance between 

m and point A is y. In other words, y measures the displacement of the mass from a fixed 

point on the table, and thus the time derivative of y is the velocity  of the mass. At this 

instant, the assembly has the shape of a diamond with diagonals of length x and y so that 
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using the Pythagoras theorem. The time derivative of this result is 

 2 2y xV  (3) 



where /V dx dt  is the rate of change of the length of the spring. For small amplitudes of 

oscillation, both x and y are always nearly equal to l, in which case Eq. (3) implies that 

V . Defining the stretch of the spring to be X x l  and noting that /V dX dt , 

conservation of mechanical energy implies that the sum of the potential energy of the spring 

and the kinetic energy of the mass is at all times a constant E, 
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But the final expression has exactly the same mathematical form as that of a mass m on a 

spring k and thus /k m . 

 

Method #3:  Use the same symbols x, y, and X as in Method #2. Suppose we consider an 

instant at which X is positive, so the spring is stretched, as sketched below but with the 

distortion exaggerated for clarity. 
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The stretched spring applies inward forces Fs on its two ends. Consequently there will be 

compressive forces F along the rods, pushing outwards on each of their ends. (I have not 

shown the two forces at end A where the attachment force cancels them out.) The forces at 

each end of a rod must be equal and opposite, since the rods are massless. Furthermore since 

the joints are frictionless, we can assume there are no transverse forces. Balancing forces at 

either (massless) end of the spring, we have 

 s2 cos 2 cos ( )F F F k x l  (5) 

in magnitude. Next, applying Newton’s second law to mass m with acceleration a, we find 
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Divide Eq. (6) by (5) and use the fact that tan ( / 2) ( / 2) /y x y x  to get 
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Substitute x l X  in both places on the left-hand side of this expression to get 
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Likewise substitute x l X  into Eq. (2) to get 
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Dropping the small 2X  term and substituting 1/22L l , Eq. (9) becomes 
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using the binomial expansion in the second step. This result makes sense for small 

displacements from equilibrium: when x increases from l by X, then y decreases from l by X. 

But because it is merely approximate, Method #1 is only valid for small amplitudes. 

Substituting Eq. (10) into both places in Eq. (8), we how have 
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Using the binomial expansion again, we get 
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so that Eq. (11) becomes 
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Retaining only the lowest (linear) term in X on the left-hand side of this equation finally 

results in 
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which formally proves that the assembly exhibits simple harmonic motion at angular 

frequency . 
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Guidelines for contributors:  

 

– We ask that all solutions, preferably in Word format, be submitted to the dedicated email 

address challenges@aapt.org. Each message will receive an automatic acknowledgment.  

 

 – If your name is—for instance—Rick Perry, please name the file ―Perry17April‖ (do not 

include your first initial) when submitting the April 2017 solution.  

 

– The subject line of each message should be the same as the name of the solution file.   

 

– The deadline for submitting the solutions is the last day of the corresponding month.    

 

– Each month, a representative selection of the successful solvers’ names will be published in 

print and on the web.     

 

– If you have a message for the Column Editor, you may contact him at 

korsunbo@post.harvard.edu; however, please do not send your solutions to this address.  

 

Many thanks to all contributors and we hope to hear from many more of you in the future! 

Note:  as always, we would very much appreciate reader-contributed original Challenges.                       

Boris Korsunsky, Column Editor 

 
 


