Dynamics of Masses

subject to Counter
moving Flows
J. West

ISU, Dept. of Chemistry \& Physics
M. Syed

RHIT, Physics \& Optical Engineering

Motivation (and Cost)

- Programming, Modeling and Numerical Methods are necessary skills
- A Challenging Project is Rewarding and a Portfolio Point
- Options:
- Stand-Alone Course
- Grafted onto a Physics course
- They all COST TIME!! But it IS worth the price

Current Approach at ISU and RHIT

- Indiana State University
- Students take the introductory course for CS majors
- Math Methods course (using some Mathematica)
- PH 310 is required, Sophomore or Junior year (alternates years)
- Rose-Hulman Institute of Technology
- One introductory programming course (CS 120 or ME 123)
- One course (EP 280/380, not required, offers some Comsol)
- Mechanics currently uses Excel (at an advanced level)
- Vpython \rightarrow Symbolic is easier, Chosen on

Purpose

Mechanics Brings Goals Together

The mid-level Mechanics course is an optimal time and environment for programming exposure(Caballero and Pollock (AJP 82 p. 231)

Advanced	\bullet Conservation principles
Physics Concepts	
•Advanced dynamics	
\bullet Variable mass	

Why Changing Mass

- Changing mass is a challenging/important topic in every Mechanics Textbook
- The timing with stages works well
- Infinitesimal reasoning is a topic with variety and challenge for students (Korff and Rebello, AJP 82, p. 695).
- Many variations on a basic model, some providing (NEW) analytic solutions, suitable for numerical work
- A student MAY choose their own project, pending Instructor Approval

Project Requirements

- Learn the basics of the language and graphics library via "stages"
- Last Stage: Upgrade to Improved Euler Method
- Mass Accretion Computation Plan (dM, M, scale color effects) must be submitted
- Present results and the program to "the class experts" (Know your audience !!)
- Submit a Final Paper as if submitting to AJP
- Compare Numerical Results with Analytical Results
- Compare "fitted" data to analytic expressions
- GRAPHS!!!!

Assessment

- The project represents 25% of the total grade
- Graphics components are necessary, beauty is voted for and gets bonus points. PHYSICS FIRST!!

Project Score	
Programming and Documentation	5%
Stage Scores (Timeline is KEY)	25%
Mass Accretion Computation Plan	$\mathbf{1 0} \%$
Progress Reports (Random)	$\mathbf{1 0} \%$
Final Paper	30%
Presentation	$\mathbf{2 0} \%$

Implementation Plan

- Analytic solutions will be submitted for publication (AJP? PRE?) in Fall 2014, with concurrent posting to Arxiv
- Project assigned in PH310 at ISU, Spring 2015
- Project will be an Independent Study or assigned in PH 315 at RHIT, Spring 2015
- Student Project assessment will be included in the Course Evaluation process at ISU in Spring 2015 with results shared at a future conference/in AJP

Possible Configurations

- Falling raindrops and icicles as examples.
- A) Three shapes with sticky mist
- B) One shape + sticky mist + Three Mist Velocities
- C) Prism with Three collision types
- Students take cases in pairs, but work is independent (Debug by Output)
- Shapes:
- Mist velocities: Floating
- Collision Types: Inelastic Prism

Disc
V > v
Catch

Sphere
V < v
Elastic

Cases with Analytic Solution

Sticky					
	M(x)	$\mathrm{M}(\mathrm{t})$	$\mathrm{V}(\mathrm{x})$	$\mathrm{V}(\mathrm{t})$	X(t)
Static	All	All*	All ${ }^{* *}$	All	All
$\mathrm{V}<\mathrm{v}$	All*	All	All ${ }^{*}$	All	All
$\mathrm{V}>\mathrm{v}$	All	P	All	P	None
Fall	All	P, S	D	All	P, S

Catch
$X(t) \quad V(x) \quad V(t)$
Static Yes Yes** Yes
$\mathrm{V}<\mathrm{v}$ Yes Yes Yes
$\mathrm{V}>\mathrm{v}$ No Yes No

* Can get from $\mathrm{M}(\mathrm{t})$ and $\mathrm{X}(\mathrm{t})$ or $\mathrm{V}(\mathrm{x})$
** Can get from $V(t), X(t)$

Elastic
$\mathrm{X}(\mathrm{t}) \quad \mathrm{V}(\mathrm{x}) \quad \mathrm{V}(\mathrm{t})$
Static Yes Yes** Yes
$\mathrm{V}<\mathrm{v}$ Yes Yes** Yes
V>v No No Yes

