Words vs. graphs: Tracking student understanding of forces

Trevor I. Smith
Ian T. Griffin, Nicholas J. Wright, Kyle J. Louis, and Ryan Moyer

July 18, 2016

Rowan 3
 University

- 47-item multiple-choice survey ${ }^{1}$
- Several question clusters that assess different topics ${ }^{2}$

A sled on ice moves in the ways described in questions 1-7 below. Friction is so small that it can be ignored. A person wearing spiked shoes standing on the ice can apply a force to the sled and push it along the ice. Choose the one force (A through \mathbf{G}) which would keep the sled moving as described in each statement below.

A. The force is toward the right and is increasing in strength (magnitude).
B. The force is toward the right and is of constant strength (magnitude).
C. The force is toward the right and is decreasing in strength (magnitude).
D. No applied force is needed

E. The force is toward the left and is decreasing in strength (magnitude).
F. The force is toward the left and is of constant strength (magnitude).
G. The force is toward the left and is increasing in strength (magnitude).

Questions 22-26 refer to a toy car which can move to the right or left on a horizontal surface along a straight line (the + distance axis). The positive direction is to the right.

Different motions of the car are described below. Choose the letter (A to \mathbf{G}) of the accelerationtime graph which corresponds to the motion of the car described in each statement.
You may use a choice more than once or not at all. If you think that none is correct, answer choice J.
(A)

(E)

(B)

(F)

(C)

(G)
(D)
None of these graphs is correct.

- Normalized gains
- Model analysis ${ }^{3}$
- Results differ from cluster to cluster as well as from school to school ${ }^{4}$

Model analysis for three schools:
Force Sled (FS) and Force Graphs (FG)

[^0]
Isomorphic Questions

Question 1 (Force Sled)

Which force would keep the sled moving toward the right and speeding up at a steady rate (constant acceleration)?

Question 16 (Force Graphs)

The car moves toward the right and is speeding up at a steady rate (constant acceleration).

Question 22 (Acceleration Graphs)

The car moves toward the right (away from the origin), speeding up at a steady rate.

Isomorphic Questions

Question 1 (Force Sled)

Which force would keep the sled moving toward the right and speeding up at a steady rate (constant acceleration)?

Question 16 (Force Graphs)

The car moves toward the right and is speeding up at a steady rate (constant acceleration).

Question 22 (Acceleration Graphs)

The car moves toward the right (away from the origin), speeding up at a steady rate.

Case 1: Moving to the right and speeding up at a steady rate.

Identifying isomorphic questions

Case	Described Motion	Question		
		FS	FG	AG
1	moving right, speeding up	1	16	22
2	moving right, steady speed	2	14	26
3	moving right, slowing down	3	18	23
4	moving left, speeding up	4	19	25

- Students use many different mental models ${ }^{5}$ to answer questions on the FMCE
- Different questions and clusters are more or less conducive to particular models
- Many students exist in a superposition state
- Answers depend on both the student and the question

$$
F \propto \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

Lines as Picture Lines as Graph

[^1]- Compare Force Graphs to Force Sled or Force Graphs

Question 16 to Acceleration Graphs

- Number of students who gave each response pair

Correct Common

- Diagonal cells show within-student coherent responses
- Large numbers show between-students consistent responses
- Cohen's w^{6} indicates the strength of the correlation between individual students' responses. ${ }^{7}$
weak: $w<0.1$; moderate: $w \approx 0.3$; strong: $w>0.5$
- Ignore models with fewer than 5\% of responses on pre- and post-test

[^2]
Case 1: Moving right, Speeding up, School 1

Case 1: Moving right, Speeding up, School 1

- Within-student coherence increases

Case 1: Moving right, Speeding up, School 1

- Within-student coherence increases
- How do individual students change from pre to post?
- Visualizing student transitions between table cells ${ }^{8}$
- "Arrows" show the number of students who went from one pair of pretest responses to a different pair
- Start in circles (pretest)
- End in triangles (post-test)
- Squares show students who did not change their answers

[^3]
Case 1: Moving right, Speeding up

School 1

Case 1: Moving right, Speeding up

School 1

Pretest
4 9 Post-test 3 39 15 1 181 17 124 $w=0.48$

School 2

School 3

Pretest Post-test

19	23	224	15
12	286	52	49
$w=0.47$		$w=0.49$	

Case 1: Moving right, Speeding up

School 1

Pretest
4 9 Post-test 3 39 15 1 181 17 124 $w=0.48$

School 2

School 3

Pretest Post-test

19	23	224	15
12	286	52	49
$w=0.47$		$w=0.49$	

Case 1: Moving right, Speeding up

School 1

Pretest		Post-test	
4	9	39	15
1	181	17	124

School 2

School 3

Pretest Post-test

19	23	224	15
12	286	52	49
$w=0.47$		$w=0.49$	

Case 1: Moving right, Speeding up

School 1

Pretest		Post-test	
4	9	39	15
1	181	17	124

School 2

School 3

Pretest Post-test

19	23	224	15
12	286	52	49
$w=0.47$		$w=0.49$	

Case 4: Moving left, Speeding up, School 3

Case 4: Moving left, Speeding up, School 3

Case 4: Moving left, Speeding up, School 3

Case 4: Moving left, Speeding up, School 3

Case 4: Moving left, Speeding up, School 3

Comparing Schools: Statistical Analyses

ANOVA results for individual student normalized gains with Tukey HSD post hoc comparisons between schools $(p<0.05)$; * indicates $p<0.001$.

	S1	S2	S3	Main Eff.	1v2	1v3	2v3
Full FMCE	0.29	0.60	0.69	$*$	$*$	$*$	0.003
Cases 1-4	0.23	0.61	0.71	$*$	$*$	$*$	0.02
Case 1	0.31	0.65	0.77	$*$	$*$	$*$	0.007

Comparing Schools: Statistical Analyses

ANOVA results for individual student normalized gains with Tukey HSD post hoc comparisons between schools ($p<0.05$); * indicates $p<0.001$.

	Average g				p-values			
	S1	S2	S3	Main Eff.	1v2	1v3	2v3	
Full FMCE	0.29	0.60	0.69	$*$	$*$	$*$	0.003	
Cases 1-4	0.23	0.61	0.71	$*$	$*$	$*$	0.02	
Case 1	0.31	0.65	0.77	$*$	$*$	$*$	0.007	

Comparison of consistency plots using χ^{2} test of independence ($p<0.05$) with the Bonferroni correction for post hoc comparisons (pairwise: $p<0.013$).

	Main Eff.	1v2	1 v 3	2 v 3
Case 1	$*$	$*$	$*$	0.24
Case 2	$*$	$*$	$*$	0.65
Case 3	$*$	$*$	$*$	0.49
Case 4	$*$	$*$	$*$	0.07

- Explicitly treating students as being in a superposition state of mental models
- Different approaches reveal discrepant similarities and differences
- Normalized gains and model analysis: S3>S2>S1
- Consistency plots: $\mathrm{S} 3=\mathrm{S} 2>\mathrm{S} 1$
- Most students at Schools 2 and 3 go from common incorrect to correct on all questions
- More students increase on Force Graphs than Force Sled, and more on Acceleration Graphs than Force Graphs
- Most students at School 1 stay in the common incorrect cell on all questions
- Contingency tables with Cohen's w show within-student coherence increasing over time
- Many different transitions for Case 4: "beginning state" + "instruction" \neq "ending state"
- Possible hierarchy of incorrect responses: ${ }^{9}$ starbursts may represent very naïve responses (only pretest); attractors may represent more sophisticated ones (only post-test)
- Cyclic transitions only visible on consistency plots

[^4]- Synthesize results across cases
- Conduct interviews to test model definitions
- Developing statistic to report between-students consistency
- Closely examine similarities and differences between the instruction at each school

Acknowledgments

(1)RUPERt

Rowan University Physics Education Research Team: Summer 2016

Physics Teacher Education

Partially supported by a PhysTEC comprehensive site award

Upcoming Posters

```
More Results!
Poster PST1-D12, 9:15-10:00 tonight!
```


More Detailed Methodology

PERC Poster Symposium: Expanding Research Questions by Expanding Quantitative Methodologies Parallel Session I, Thurs. 7/21/16, 10:30 am (Bataglieri Room)
email: smithtr@rowan.edu

[^0]: ${ }^{3}$ L. Bao and E. F. Redish, Phys. Rev. ST Phys. Educ. Res. 2, 010103 (2006). ${ }^{4}$ T. I. Smith et al., Phys. Rev. ST Phys. Educ. Res. 10, 020102 (2014).

[^1]: ${ }^{5}$ T. I. Smith and M. C. Wittmann, Phys. Rev. ST Phys. Educ. Res. 4, 020101 (2008), R. J. Beichner, Am. J. Phys. 62, 750 (1994), L. C. McDermott et al., Am. J. Phys. 55, 503 (1987)

[^2]: ${ }^{6} \mathrm{~J}$. Cohen, Statistical power analysis for the behavioral sciences, $2^{\text {nd }}$ (Lawrence Erlbaum Associates, 1988).
 ${ }^{7}$ R. Rosenblatt and A. F. Heckler, Phys. Rev. ST Phys. Educ. Res. 7, 020112 (2011).

[^3]: ${ }^{8}$ M. C. Wittmann and K. E. Black, Phys. Rev. ST Phys. Educ. Res. 10, 010114 (2014)

[^4]: ${ }^{9}$ R. K. Thornton, AIP Conf. Proc. 399, 241 (1997)

