Holographic Scaling in Newtonian Gravity

Mass and Black Hole Physics

A Question For Gen. Phys. Students

Let's Answer the Question

$$
\begin{aligned}
\sum F=-F_{g} & =m a \\
-\frac{G M m}{r^{2}} & =m a
\end{aligned}
$$

$$
-\frac{G M_{g} m_{g}}{r^{2}}=m_{I} a
$$

$$
-\frac{G M_{g} \not m_{g}}{r^{2}}=\not m_{I} a
$$

$$
g=-\frac{G M_{g}}{r^{2}}
$$

$$
m_{g}={ }^{?} m_{I}
$$

Seems to be true classically.

- Gravitational Mass
- Nöther's Theorem:

$$
\int T_{00} d V=m_{A D M}
$$

- ADM Procedure:

$$
M_{A D M}=\frac{1}{16 \pi G} \lim _{r \rightarrow \infty} \oint \delta^{i j}\left(\partial_{i} g_{j k}-\partial_{k} g_{i j}\right) n^{k} d S
$$

- Inertial Mass
- Objects' property to resist change in its state of motion
- Weinberg Salam:

$$
\mathcal{L}_{h}=\left|D_{\mu} h\right|^{2}-\lambda\left(|h|^{2}-\frac{v^{2}}{2}\right)^{2}
$$

- Way to difficult for General Physics!

Gravielectric Duality

$$
\vec{E} \cdot \vec{A}_{\odot}=\frac{q_{\text {encl }}}{\epsilon_{0}}
$$

Gauss' Law

- Using Gauss' Law

- All we know is Gauss' Law, find the electric field of a point charge ' Q ', a radial distance ' r ' away.

$$
\begin{gathered}
\vec{E} \cdot \vec{A}_{\odot}=\frac{q_{\text {encl }}}{\epsilon_{0}} \\
\vec{E} \cdot \vec{A}=A \vec{E} \cdot \hat{r} \\
\vec{E} \cdot \hat{r} \neq 0 \Rightarrow \vec{E} \cdot \hat{r}=E \hat{r} \cdot \hat{r} \\
\Rightarrow \vec{E}=E \hat{r} \\
\Rightarrow \vec{E} \vec{A}=E A(\hat{r} \cdot \hat{r})=q_{\text {encl }} / \epsilon_{0} \\
E A=Q / \epsilon_{0} \Rightarrow E 4 \pi r^{2}=Q / \epsilon_{0} \\
E=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \quad E=\frac{k Q}{r^{2}}
\end{gathered}
$$

$$
\begin{aligned}
q & \rightarrow m \\
\frac{1}{4 \pi \epsilon_{0}} & \rightarrow-4 \pi G \\
\vec{E} & \rightarrow \vec{g}
\end{aligned}
$$

$$
\vec{g} \cdot \vec{A}_{\odot}=-4 \pi G m_{\text {encl }}
$$

charge-mass
Coulomb-Newton Constant
Electric-Gravitational Field

Gravitational Gauss' Law

Holography and ADM Mass

$$
\vec{g} \cdot \vec{A}_{\odot}=-4 \pi G m_{\text {encl }} \quad \quad \text { Gravitational Gauss' Law }
$$

$$
m_{e n c l}=-\frac{1}{4 \pi G} \vec{g} \cdot \vec{A}_{\odot}
$$

Need to make sure S^{2} encloses all the charge:

$$
r \rightarrow \infty
$$

$$
m=\lim _{r \rightarrow \infty}-\frac{1}{4 \pi G} \vec{g} \cdot \vec{A}_{\odot}
$$

Holography and ADM Mass

$$
m_{A D M}=\lim _{r \rightarrow \infty}-\frac{1}{4 \pi G} \vec{g} \cdot \vec{A}_{\odot}
$$

$$
d s_{3}^{2}=g_{i j} d x^{i} d x^{j}=g(r)\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

where $g(r)=1-2 \Phi+\mathcal{O}\left(\frac{1}{r^{2}}\right)$. Using this in $M_{A D M}$, we obtain:

$$
\begin{aligned}
& \delta^{i j}\left(\partial_{i} g_{j k}-\partial_{k} g_{i j}\right) n^{k}=4 \partial_{i} \Phi n^{i} \Rightarrow \\
& M_{A D M}=\frac{1}{16 \pi G} \lim _{r \rightarrow \infty} \oint \delta^{i j}\left(\partial_{i} g_{j k}-\partial_{k} g_{i j}\right) n^{k} d S \\
&=\frac{1}{16 \pi G} \lim _{r \rightarrow \infty} \oint 4 \partial_{i} \Phi n^{i} d S \\
&=\frac{-1}{4 \pi G} \lim _{r \rightarrow \infty} \oint \vec{g} \cdot d \mathbf{S}
\end{aligned}
$$

- Holographic Definition of Mass
- Mass is the gravitational flux through the surface of a 2-sphere at radial infinity.

Black Hole ADM Mass From Holography

$$
\begin{aligned}
& \Phi= \begin{cases}-\frac{G\left(2 M r-Q^{2}\right)}{2 r^{2}} & \text { R.N. } \\
-\frac{G M M r}{r^{2}+a^{2}} & \text { Kerr } \\
-\frac{G\left(2 M r-Q^{2}\right)}{2\left(r^{2}+a^{2}\right)} & \text { K.N. }\end{cases} \\
& \vec{g}= \begin{cases}-\frac{G M}{r^{2}} \hat{r}+\frac{G Q^{2}}{r^{3}} \hat{r} & \text { R.N. } \\
-\frac{G M\left(r^{2}-a^{2}\right)}{\left.r^{2}+a^{2}\right)^{2}} \hat{r} & \text { Kerr } \\
-\frac{G\left(r\left(M r-Q^{2}\right)-M a^{2}\right)}{\left(r^{2}+a^{2}\right)^{2}} \hat{r} & \text { K.N. } \\
m_{A D M}=\lim _{r \rightarrow \infty}-\frac{1}{4 \pi G} \vec{g} \cdot \vec{A}_{\odot}\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
m_{A D M}=\frac{\lim _{r \rightarrow \infty}}{4 \pi G} \oint_{\partial V} \Gamma^{i}{ }_{00} \delta^{i j} d A^{j} \\
\Gamma^{r}{ }_{t t}=\left\{\begin{array}{ll}
\frac{\frac{G M(r-2 G M)}{r^{3}}}{\frac{G M\left(r^{2}+G\left(Q^{2}-2 M r\right)\right)}{r^{4}}} \begin{array}{ll}
\frac{G M\left(a^{2}+r(r-2 G M)\right)\left(r^{2}-a^{2} \cos ^{2} \theta\right)}{\left(r^{2}+a^{2} \cos ^{2} \theta\right)^{3}} \\
\frac{G M\left(a^{2}+r^{2}+G\left(Q^{2}-2 G M r\right)\right)\left(r^{2}-a^{2} \cos ^{2} \theta\right)}{\left(r^{2}+a^{2} \cos ^{2} \theta\right)^{3}} & \text { K.s. } \\
\text { K.N. } .
\end{array} \\
m_{A D M}=\frac{\lim _{r \rightarrow \infty}}{4 \pi G} \int_{0}^{2 \pi} \int_{0}^{\pi} \Gamma_{t t}^{r} r^{2} \sin ^{2} \theta d \theta d \phi \\
= \begin{cases}M & \text { S.s. } \\
M & \text { R.N. } \\
M & \text { Kerr } \\
M & \text { K.N. }\end{cases}
\end{array} . \begin{array}{l}
\text { R. }
\end{array}\right.
\end{gathered}
$$

Questions?

Special Thanks to:

- The Audience
- My Coauthors
- AAPT

