Acoustic Beamforming for Sound Recording in Noisy Classroom Environments

Benedikt W. Harrer - Department of Physics and Astronomy, San José State University, San José, CA George Condit - Industrial Technology, Concentration in Computer Electronics and Network Technology, San José State University, San José, CA

Problem: Recording in Noisy Classrooms

The complex and dynamic nature of classrooms often prevents effective and non-obtrusive observation and audiovisual recording of authentic learning activities. Up-close positioning of recording equipment may alter student behavior and can increase the complexity of post-processing and data analysis.

Possible Solution: Acoustic Beamforming

Acoustic beamforming enables unobtrusive recording and comprehensive observation through amplification of desired signal and attenuation of unwanted noise.

Linear Microphone Array

Allows for superposition of time-delayed signals from same signal source. "Spatial filtering" allows separation of desired from unwanted signals.

 α : angle of beam with respect to array Δt_i: Time elapsed between signal generation and signal reception

 Δx_i : Distance between signal source and respective microphones

Classroom Audio Recording

Array positioned at perimeter for unobtrusive recording. Increasing number of microphones can improve spatial resolution. Using multiple arrays may further increase flexibility and resolution of recording to narrow in on individual speakers. **Initial tests were** conducted with a single array only.

References

Van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine, 5(2), 4-24. McCowan, I. (2001). Microphone arrays: A tutorial. Queensland University, Australia.

Tests show that a four-microphone array with 10 cm spacing allows for successful beam-steering to distinguish two spatially separated constant-frequency signals. Further tests are necessary to determine spatial resolution for variable-frequency signals like speech.

Michel, U. (2006). History of acoustic beamforming. In Proceedings of the Berlin Beamforming Conference, Berlin, Germany. Greensted, A. (n.d.). Delay Sum Beamforming – The Lab Book Pages. Retrieved January 03, 2018, from http://www.labbookpages.co.uk/audio/beamforming/ delaySum.html

