# Relativity on Rotated Graph Paper: Calculations with Causal Diamonds 

Rob Salgado (rsalgado@uwlax.edu)<br>Dept of Physics, U Wisconsin La Crosse



## Relativity on Rotated Graph Paper

- an ordinary Minkowski spacetime diagram emphasizing light-signals allowing "ticks of a light-clock" to be visualized
- physically motivated: traced out by the light-signals in a ticking light-clock
- method of calculation: count boxes ("clock diamonds") and do simple algebra
- the visualization encodes many relativistic effects and lends itself to numerous physical interpretations

- first developed for use in algebra-based introductory courses
- new methods more appropriate for more advanced students


## Can you see the " 4 ticks" on a spacetime diagram?



## lice at rest and


hyperbolic graph paper with distinguished center

two-observer graph paper, with distinguished $\beta_{2}=(3 / 5)$

rotated graph paper
"Ticks" (a.k.a. "clock diamonds") are constructed using the light-signals in a longitudinal light-clock

## Light-Clock Diamonds - as units of displacement

## Alice's Clock Diamonds



Bob's Clock Diamonds?

- DIAGONAL along Bob's worldline
- SAME AREA as Alice's Clock Diamond



## Causal Diamonds

- Intersection of (the future light cone of event O) and (the past light cone of event $Q$ ).
"events that can be influenced by 0 and can then influence $Q^{\prime \prime}$
- area of the diamond (in units of clock diamonds)
= squared-interval $s^{2}=($ width $u)($ height $v)$
- aspect ratio of the diamond $\begin{aligned} & \text { = square of the Doppler Factor } \\ & (\text { encodes velocity } \beta=(V / c) \text { ) }\end{aligned} k^{2}=\frac{(\text { width } u)}{(\text { height } v)}$
Doppler $k=\sqrt{\frac{1+\beta}{1-\beta}}$
$\beta=\frac{k^{2}-1}{k^{2}+1}$

$$
s^{2}=(\text { width } u)(\text { height } v)
$$

Alice says:

## Causal Diamonds

$$
k^{2}=\frac{(\text { width } u)}{(\text { height } v)}
$$

with clock-diamond components

$$
\beta=\frac{k^{2}-1}{k^{2}+1}
$$



$$
\begin{aligned}
& s^{2}=(8)(2)=16=(4)^{2} \\
& k^{2}=\frac{(8)}{(2)}=4=(2)^{2} \\
& \beta=\frac{(4)-1}{(4)+1}=\frac{3}{5}
\end{aligned}
$$

The "4"!

$$
\begin{aligned}
& s^{2}=(4)(4)=16=(4)^{2} \\
& k^{2}=\frac{(4)}{(4)}=1=(1)^{2} \\
& \beta=\frac{(1)-1}{(1)+1}=0
\end{aligned}
$$

The Clock Effect/Twin Paradox

$(O Z)^{2}=100$
$=(4)^{2}$
$=(10)^{2}$


## Collision

(in Energy-Momentum Space) $m_{1}=8 \quad \beta_{1 i}=\frac{15}{17} \beta_{1 f}=-\frac{3}{5}$ $m_{2}=12 \quad \beta_{2 i}=-\frac{5}{13} \quad \beta_{2 f}=$ ?

- verify $m_{2 f}=12$
- compute $\beta_{2 f}$



## Collision

(in Energy-Momentum Space)

$$
\begin{array}{ll}
m_{1}=8 & \beta_{1 i}=\frac{15}{17} \beta_{1 f}=-\frac{3}{5} \\
m_{2}=12 & \beta_{2 i}=-\frac{5}{13} \beta_{2 f}=?
\end{array}
$$

- verify $m_{2 f}=12$

$$
s^{2}=(36)(4)=144=(12)^{2}
$$

- compute $\beta_{2 f}$

$$
\begin{aligned}
& k^{2}=\frac{(36)}{(4)}=9 \\
& \beta=\frac{(9)-1}{(9)+1}=\frac{8}{10}
\end{aligned}
$$

Moore (Six Ideas that Shaped Physics) R10S. 3


## Relativity on Rotated Graph Paper

- get folks to use the method
to do..
- chapter for a Modern Physics text?
- uniformly-accelerated observers

"Relativity on rotated graph paper" Am.J.Phys. 84, 344 (2016)
https://doi.org/10.1119/1.4943251
- other mathematical properties

geogebra.org/robphy
physicsforums.com/insights/relativity-rotated-graph-paper/

