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Abstract. This article will present some guiding principles (gleaned from many years of painful
experience) for successfully teaching a tensor-based course in general relativity to undergraduates.
These principles include (1) simultaneously developing the physics and mathematics, (2) liberally
using two-dimensional analogies, (3) building on students’ understanding of vectors and vector
spaces, (4) designing drills to help students overcome common misconceptions about tensor notation,
(5) helping students “own” the derivations, (6) designing a homework-grading scheme that allows
students to try hard problems and learn from corrections. I will also describe some tricks and
worksheets that I have developed that help students easily evaluate Christoffel symbols and Ricci
tensor components for diagonal metrics.

Overview of the Problem

General relativity (GR) has undergone an amazing transformation in the past few decades,
moving from being a comparatively inactive and mostly theoretical subject to a topic sup-
porting lively experimental and computational research programs. The topic’s current vi-
tality and increasingly important applications in astrophysics (and even engineering!) make
the time ripe for GR to become more regular part of our undergraduate offerings. How-
ever, the fact that GR is naturally expressed in the abstract and (for most undergraduates)
unfamiliar language of tensor calculus makes achieving this goal more difficult.

The first generation of GR textbooks (at least partially) targeted toward U.S. undergrad-
uates (two superb examples are Schutz1 and Ohanian and Ruffini2) more or less followed
the order of presentation common to graduate-level GR texts: a thorough discussion of the
mathematical concepts of the theory followed by the derivation of solutions to the Einstein
equation and discussion of their implications. This (very logical) “math first” approach has
serious pedagogical drawbacks, not the least of which is that a long mathematical preamble
can be deadly. As a result, many first-generation books tend to rush too quickly through
the mathematics for undergraduates to gain the mastery and insight they need.

In reaction, the second generation of GR textbooks now emerging, led by Hartle’s excel-
lent textbook3 and recently followed by Cheng4, seek to “put the physics first”, introducing
only the concept of the metric and summation notation before digging into applications.
The metrics needed for those applications are asserted, not derived. The full mathematics
of curvature and the Einstein equation is only discussed at the end of the book, and both
authors are frank about the possibility one might never get to see the full machinery of
tensor calculus in a typical undergraduate course.

While this general approach is a necessary corrective step, it also has (in my opinion)
a serious pedagogical flaw. GR’s deep logic (and graceful beauty) is founded on drawing
physical implications from the simple model of curved spacetime. Teaching GR without the
tensor language needed to understand this model deeply is like studying Shakespeare’s plays
after translation into 9th-grade English (or, more prosaically, Newtonian mechanics without
calculus): some specific things become easier to understand, but something vital has been
lost. This is not simply an idealistic concern: it has very practical pedagogical consequences.
When I attempted this approach myself some years back, I found that my students, without
the firm moorings provided by the theory’s logic, found themselves rudderless in the sea of
applications and, in particular, experienced their own understanding of GR to be inadequate.
This was not the empowering experience I had in mind for them!

The purpose of this paper is to present a third way that minimizes neither the difficulty
nor the importance of tensor calculus, but rather faces the challenge squarely and provides
the pedagogical tools needed for students to become capable and satisfied users of tensors.
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The rest of this will article discuss seven principles for designing undergraduate courses
that can successfully teach GR (with tensors) to undergraduates. These principles grow
partly out of my experience teaching GR to undergraduates roughly 13 times in the past
24 years, and partly out of my experience in addressing similar challenges while developing
my introductory physics text Six Ideas That Shaped Physics. They also draw somewhat on
the concepts of physics educational research. The principles are:

1. Develop the physics and math simultaneously
2. Use two-dimensional visualizations
3. Keep the math (appropriately) simple
4. Drill students on tensor notation
5. Help students “own” the math
6. Grade homework appropriately
7. Use tricks and tools to avoid tedious calculations

Each remaining section in this article discusses one of these principles in depth.

1 Develop the physics and math simultaneously

Teaching undergraduates tensor calculus takes time, and there are at least two reasons
why it is not a good idea to do this all at the beginning of the course. First, delaying
the gratification of the juicy physics for many weeks will sap the students’ (and even the
instructor’s) motivation. Secondly, students need time for the strange concepts of GR and
tensor calculus to percolate into their none-too porous brains. It is advantageous, therefore,
to interweave the math and physics throughout the course.

Table 1 describes a possible 13-week syllabus (with 3 classes / week) that illustrates how
one might spread the development of the mathematics over nearly the entire course. (In a
14-week semester, this syllabus allows for in-class midterms and/or review days before take-
home exams.) The starred classes are primarily devoted to development of mathematical
and/or theoretical concepts.

1 Conceptual Overview Review of Relativity Four-Vectors
2 *Index Notation* *Arbitrary Coordinates* *Tensor Equations*
3 Maxwell’s Equations *Geodesics* The Schwarzchild Metric
4 Particle Orbits Perihelion Precession Photon Orbits
5 Gravitational Lenses Event Horizon Alternative Coordinates
6 BH Thermodynamics The Kerr Metric Kerr Particle Orbits
7 Ergoregion and Horizon Negative Energy Orbits The Penrose Process
8 *The Absolute Gradient* *Geodesic Deviation* *The Riemann Tensor*
9 *Stress Energy Tensor* *The Einstein Equation* Interpreting the Equation
10 Schwarzchild Solution The Observed Universe A Cosmic Metric
11 Evolution of the Universe Cosmic Implications The Early Universe
12 *Linearized Gravity* *Gauge Freedom* Gravitational Waves
13 “Energy” in GWs Generation of GWs Applications

Table 1 A sample GR course syllabus

The mathematical classes in weeks 2 and 3 provide sufficient basis to understand the metric
tensor, how to handle arbitrary coordinates (even in potentially curved spaces), basic tensor
concepts (including the the benefit of writing equations in covariant form), and calculating
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geodesics (using the calculus of variations). The interlude on Maxwell’s equations provides a
break that gives students a chance to consolidate their understanding tensor notation in the
(more or less) familiar context of electricity and magnetism as well as illustrating the power
of the notation by “deriving” Maxwell’s equations as the natural covariant generalization
of Gauss’s law. After the derivation of the geodesic equation in Week 3, it is natural to
spend time exploring the motion of particles in Schwarzchild and Kerr spacetimes. These
metrics are not derived, but once they given, one can study their physical implications in
great depth. So far, the syllabus is very similar to the one implied by Hartle’s book.

However a second block of mathematical development in weeks 8 and 9 provide the foun-
dation for solving the Einstein equation. Weeks of familiarity with index notation and with
practical applications make these difficult concepts easier for students than it would have
been if they had been presented at the beginning. They verify the Schwarzchild solution
(proving Birkoff’s theorem along the way) and then generate the Friedmann-Robertson-
Walker metric before exploring its meaning. A third and final blast of mathematics regard-
ing the linearized approximation to the Einstein field equations sets up an exploration of
gravitational waves.

The point is that in a class structured this way, students have a chance to ingest the
mathematics in more-or-less bite-sized chunks, and thoroughly digest each bit before moving
on to the next. This greatly increases the amount of nourishment students can absorb from
the mathematics.

Even when appropriately spread out, though, tensor calculus remains difficult. The next
four sections describe techniques for making the mathematics more accessible.

2 Use two-dimensional visualizations

Students in my classes practice using every new tensor concept (the meaning of the metric,
the difference between a coordinate basis and an orthonormal basis, the distinction between
covector and vector components, coordinate and tensor transformations, the absolute gradi-
ent, Christoffel symbols, geodesic deviation, measures of curvature) in the context of easily
visualized two-dimensional flat and curved spaces before applying them to four dimensional
spacetimes. They explore not only polar coordinates in flat space and longitude/latitude
coordinates on a sphere, but stranger coordinate systems for flat space and other types of
curved spaces. Practicing the formalism and the use of these ideas in concrete situations
that students can easily visualize helps them avoid errors and builds their intuition about
and confidence in the mathematics.

This may seem like a simple idea, but I have found it to be both essential and yet
underutilized in most textbooks (Hartle’s text moves in the right direction, though). Using
more two-dimensional visualizations is something that we can all do more of (even in the
“physics first” models) to make the mathematics more accessible.

3 Keep the math (appropriately) simple

Having earlier praised the deep beauty of GR and the importance of tensor calculus in
appreciating that beauty, let me now issue a warning against too much beauty! Undergrad-
uates can be taught tensor calculus, but just barely. This makes it imperative to keep the
mathematical formalism as conceptually simple as possible.

In order to teach students effectively, one needs to meet them where they are. Junior
and senior undergraduates are generally reasonably competent with vector calculus and
using vector components in calculations. Therefore, I have found it helpful to build on this
strength by treating tensors almost exclusively as a mathematical quantity represented by
a collection of components that transform a certain way, thus making tensors simply one
step more complicated than a vector. In keeping with this approach, I deliberately avoid
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trying to teach students at this level about one-forms, dual spaces and dual bases, and
the isomorphism between basis vectors and gradient operators. I also avoid the Levi-Civita
tensor, Killing vector fields, wedge products, and so on. These ideas add elegance and power
to the mathematics but are beyond what is actually needed to understand the ideas and to
do useful calculations.

I realize that ignoring the geometric distinction between vectors and one-forms (and
between basis vectors and basis one-forms) is somewhat “retro” and obscures something
valuable and conceptually important, but when I have tried to teach these ideas, I have
found that they perplex students greatly and (in my opinion) unnecessarily. I honestly do
not think that these distinctions are sufficiently helpful to students at this level to spend
the time pushing through the confusion they initially create. Indeed, I believe that students
who learn about tensors as collections of components will have a firmer foundation for
understanding the deeper ideas of differential geometry (and more appreciation for their
elegance) when and if they encounter them in a graduate-level course in GR, while those
students who are not bound for research in GR (or even graduate school) are not left
behind. As I see it, the goal in this course is neither rigor nor elegance but understanding
and empowerment.

Because of this, I consider the mathematics in all of the major texts that are oriented (at
least partially) to undergraduates is too sophisticated, even in Hartle and Cheng. The con-
cern that those promoting the “physics first” approach have with the difficulty of the math
is therefore simultaneously valid and (ironically) self-fulfilling. The alternative to avoiding
the math is working hard to make it as simple and accessible as possible. I have found
experimentally that undergraduates really can learn tensor calculus and use it competently
if one does this.

While I am on the subject of simplicity, let me talk about a very small thing one can do
that has a surprisingly large impact. Instead of using numbers as vector or tensor indices
(e.g. p0, p1, p2, p3), I try whenever possible to use coordinate symbols (e.g. pt, pr, pθ, pφ).
This is increasingly the common practice (see Hartle, for example), and I want to endorse it
as being very helpful: students are less likely to see the superscripts as powers and are less
likely to make mistakes. Operationally, I can report that students do not seem to confuse
such coordinate-specific indices with abstract indices that can take on any value, even when
greek letters such as θ and φ are used.

4 Drill students on tensor notation

Tensor notation is new and strange for undergraduates, but to become competent users
of tensor calculus, they must learn to interpret the notation both accurately and subcon-
sciously, so that they can focus on what the equations mean. In taking their awkward
first steps toward this goal, students make a set of standard errors that can be, recognized,
confronted, and resolved. Here are some common errors students make:

• They think that δµ
µ = 1, not 4.

• They think that ηµνAµBν = ηµµAµBµ.
• They think that the equation gαβ = gµνδµ

σδν
γ looks reasonable.

• They don’t understand why d(pµpµ)/dτ = 2pµ(dpµ/dτ).

and so on. Ultimately, these errors boil down to deeper problems:

• Failing to recognize implied sums
• Failing to distinguish between free and summed indices
• Failing to understand how index renaming works and what it means

and so on. Observing problems like these in student papers is one of the things that has led
people to despair about teaching undergraduates tensor notation.
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The alternative to despair is confronting these problems head-on by drilling students on
the notation until it becomes second nature. Most published texts have too few problems
that ask students to

• Identify free and summed indices
• Write out the implied sums in an equation
• Check that the free indices on both sides of the equation are consistent
• Rename indices in an appropriate way to pull out a common factor
• Identify nonsensical equations

It may seem silly to drill students on such basic things, but my experience is that
spending time in such simple drills and addressing the standard errors when first teaching
the notation really does improve student competence and confidence.

There is also a mantra that I try to drill (Johnny Cochran-like) into their consciousness:
“When in doubt, write it out!” After students write out the implicit sums several times
(and recognize that they could do this any time), they begin to see the structural meaning
of the equations more clearly, and also gain some confidence that they can sort out any
interpretation difficulties on their own.

5 Help students “own” the math

One of the most robust results of physics education research is that (at least in the context
of introductory physics) students learn the material much more effectively in courses where
they are actively engaged in the learning process as opposed to receiving the material in
passive lectures or readings5. Students need to make the ideas “their own” by actively
processing them and holding it up against their own experience. Courses that encourage
this process in the design of class activities and homework exercises yield students that
perform much better on conceptual tests than those from more traditional classes.

It is certainly plausible that this applies to upper-level courses as well. However, upper-
level courses that embrace this philosophy are even rarer than introductory courses that do.
Yet the kind of boost promised by active-engagement methods is exactly what we need in a
general relativity class, where the concepts are challenging and the mathematics is difficult.
Students need not only to see the results, they need in a very real sense to own them.

A second issue that provides part of the motivation behind the “physics first” movement
is the recognition that the math in traditional general relativity texts (and, by extension,
in lectures) tends to overpower the physics. Students do have a hard time seeing the flow
of the physical argument in the midst of all the derivations and calculations.

I claim that one can address both of these problems by (1) redesigning the textbook
and (2) rethinking the purpose of class time. The class notes I have developed over the
years (which I am slowly shaping into a textbook) have gradually evolved to a format that
emphasizes active learning. At present, each class day’s notes begin with a four-page section
that summarizes (without derivations) some important mathematical results and physical
ideas. The student is then referred to a series of boxes that outline the derivations and other
details, with exercises that push the students to fill in intervening steps and/or practice using
the ideas (white space for student work is provided in each box). Students are expected
to come to class having read the overview and having worked through the exercises in the
boxes. We spend most of class time dealing with difficulties the students had with the
exercises, answering questions that the overview and exercises have raised, working example
problems, and (if there is time) discussing tangential issues of interest. Homework problems
are more oriented toward applications than derivations.

The point of this organization is to ensure that students have seen the big picture clearly
in the overview and at the same time have made the derivations their own by working
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through them personally before even coming to class. Class time is then effectively tar-
geted at the specific difficulties that they are having, difficulties that students have become
personally engaged with as a result of their preparation.

I think that this specific approach would be effective in class sizes up to about 15 students,
and I can imagine adaptations that would make it work in larger classes as well. For example,
one might begin the class by having students coalesce into groups of 5 or so and work for 10
minutes or so to define the difficulties with the reading and exercises that are common to all
of them (in the process, helping each other with the simpler problems). The groups could
then present their questions to the entire class, and the instructor could address them. I
think that this 10-minute pre-processing of questions would save the instructor more than
10 minutes by helping focus the class more effectively on the most important issues. In
a large class, one might also want to break up the session at least once in the middle by
posing a problem or question that students can address in their groups. This would help
keep students from settling back into passive listening.

6 Grade homework wisely

We all know from experience that we really learn physics only after doing appropriate
homework. However, homework can be a daunting experience in a GR class: the problems
are typically quite challenging, and there are many ways that a solution can go wrong. But
homework assignments can be structured in a way so that students can face very difficult
problems without anxiety, don’t spin their wheels uselessly on a problem, and learn from
their mistakes. The key is in how the homework is evaluated.

Here is an outline of the homework scheme that I use in all my upper-level courses. I
grade each student’s initial effort on each problem using the following 4-point grading rubric:

Initial Effort
4 Satisfactory initial effort
3 Missing explanations or steps
2 Major problem parts missing (or didn’t finish)
1 Very little coherent effort
0 No initial effort

Note that these initial-effort points have nothing to do with whether that effort is correct:
students can earn a full 4 points on this part and be completely wrong. I make no comments
at this stage except in the rare case where the student has made an error that I don’t think
that they will be able to figure out when they look at my solution. I then write something
like 4/ / on each of the students’ initial efforts and return the problem sets to the students’
department mailboxes with copies of my solutions. (I will talk about the two empty spaces
after the 4 in a moment.) It takes literally a few seconds per problem to do this, so I can
usually return the initial efforts the same day.

Students then use the printed solutions to correct their work using a different color ink.
When they return their corrected homework, I then assess both their original work and the
corrections on each problem, grading them according to the following rubrics:

Correction Quality Correction needed
3 Solution is now completely correct 3 No correction was necessary
2 Minor issues were not corrected 2 Minor corrections were needed
1 Major issues were not corrected 1 Important corrections were needed
0 No correction effort 0 Initial effort needed a complete rewrite

filling these scores into the two blank spaces after the initial-effort score. So, a student who
does a problem completely right the first time earns 10 total points; a student who makes
minor errors but finds and corrects them earns 9 points, a completely clueless student who
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nonetheless makes a good effort and fully corrects his or her work can earn up to 7 points, and
even a person who submitted no initial effort on the due date but submits a full correction
(i.e. a hand-written copy of the printed solution) earns 3 points.

This homework scheme has the following benefits:

1. It strongly rewards effort and care, and does not come down too hard on students that
don’t solve the problem correctly the first time. This encourages students to face difficult
problems without stress and discourages cheating.

2. At the same time, students don’t spend hours and hours spinning their wheels. After a
reasonable amount of time, they will give up, knowing that they can earn points on the
correction.

3. It motivates students to study the printed solutions carefully.

4. It encourages students to become self-critical about their work. Students can learn a
lot about the subject and about good problem-solving style by comparing their work to
solutions written by an expert.

5. It makes grading easy. Comments are almost never necessary, because students evaluate
and correct their own work. Even though the instructor looks at each paper twice,
grading goes very rapidly.

While I have found this scheme very useful in smaller classes, in larger classes one might
modify the scheme so that a complete initial grade could be given initially, making the
second pass optional. One could award something like 4 points for effort, 4 points for
correctness, and 2 points for the quality of the initial effort. Students could then optionally
earn back “correctness” points by submitting a correction. The disadvantage of such a
scheme would be that students would not study the solutions for problems they got right
and would not have to assess for themselves the quality of their work. On the other hand,
it would greatly reduce the number of submitted corrections. It also avoids the problem of
having to harangue the students to turn in corrections: a complete score is on record for
each problem even if they only hand in the initial effort.

However one does it, the point is to create a homework scheme that rewards effort,
prompts students to think about their work, gives them a chance to study expert solutions,
and doesn’t make them too anxious. This is valuable in every upper-level class, but perhaps
especially so in a GR class.

7 Use tricks and tools to avoid tedious calculations

Students need some practice calculating Christoffel symbols and components of the Riemann
and Ricci tensors to understand how they work, but once they have done it a few times
(preferably in two dimensions), there is not much more to be learned. Solving the Einstein
equation can be made much more palatable for students if one uses some powerful and
general tools to make such calculations simpler.

If students have access to Mathematica or Maple at your campus, one can easily set up
worksheets that can calculate such components (see Hartle’s website6 for some examples).
However, I have for several years used a worksheet (see the appendix) that is almost as good
and costs only a few pennies-worth of xeroxing to use. I got the basic idea from Rindler7, but
converted his sketch of a method to a full-blown worksheet. Students can use this worksheet
to evaluate Christoffel symbols and Ricci tensor components quickly and accurately for any
diagonal metric in two, three, or four dimensions by writing down what A,B, C, and D
are for the metric in question, writing above each term in the worksheet what that term
becomes for that metric, and collecting the nonzero terms.
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One can also use computer programs to generate numerical solutions, particularly for
displaying particle orbits, graphs, embedding diagrams, and so on. I have written a few such
programs (and I understand that Wolfgang Christian of Davidson College is in the process
of developing a number of such programs.) Such programs can be terrific tools for helping
students visualize the physical implications of the equations.

Such tools are most valuable when students see them as extending abilities that they
already have rather than being black boxes. When I use the worksheet, I ask students to
check that the worksheet correctly gives the Ricci tensor components for an arbitrary two-
dimensional diagonal metric so that they see how it works and begin to trust it. When I
use a computer program, I also first have them check that the program reproduces simple
cases that we have calculated by hand.

I have also found it useful to re-express the Einstein equation in terms of the Ricci tensor
instead of the Einstein tensor8:

Rµν = 8πG(Tµν − 1
2gµνT ) + Λgµν (1)

The Ricci tensor is simpler than the Einstein tensor to evaluate, and the worksheet makes
calculating its components straightforward. Since Rtt reduces in the newtonian limit to the
laplacian of the newtonian gravitational potential, the Einstein equation expressed this way
also has a simple physical interpretation (for a perfect-fluid source at least) that is outlined
very nicely in Chapter 19 of Schutz’s recent popular book on gravity9. (Raising the first
index also removes the metric terms from the right side of the equation.) I was greatly
surprised at just how much easier calculations became and how much more insight students
could get from this form of the equation (particularly in the context of cosmology).

Here is another trick that people might not know. When I first develop the geodesic
equation in my course, I use a Lagrangian method to maximize the proper time along
the particle’s worldline. This nicely connects with methods that students have learned in
mechanics, and also reinforces the idea that a geodesic is the curve of extreme “distance” be-
tween two points. Midway through the course (after a discussion of the absolute gradient),
we also see that a geodesic is the straightest possible line in a given space or spacetime,
and give the geodesic equation in terms of Christoffel symbols. Now, comparing the two
equations provides a very rapid method of calculating Christoffel symbols for any metric. If
one uses the Lagrangian method to evaluate the four components of the geodesic equation,
and then compares the result with the geodesic equation expressed in terms of Christoffel
symbols, one can immediately read off the Christoffel symbols.

For example, consider the time component of the geodesic equation in Schwarzchild
spacetime. The Lagrangian form of the geodesic equation implies that

0 = d

dτ

(
gµν

dxν

dτ

)
− 1

2
∂gαβ

∂xµ

dxα

dτ

dxβ

dτ
(2)

If we set µ = t, and recognize that the metric does not depend on t, this becomes

0 = d

dτ

(
gtt

dt

dτ

)
− 0 = ∂gtt

∂r

dr

dτ

dt

dτ
+ gtt

d2t

dτ2 ⇒ 0 = d2t

dτ2 + 2GM/r2

1− 2GM/r

dr

dτ

dt

dτ
(3)

after setting gtt = (1 − 2GM/r) and dividing through by gtt. If we compare this to the
geodesic equation in the form

0 = d2xµ

dτ2 + Γ t
αβ

dxα

dτ

dxβ

dτ
(4)

we see immediately that Γ t
rt = Γ t

tr = (GM/r2)(1−2GM/r)−1 and that all other Γ t
αβ = 0.

Therefore we have calculated 16 Christoffel systems by taking what amounts to a single
derivative!
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Conclusion

This article has outlined just a few of the things that I have found helpful in teaching a
tensor-based GR course over the years. There are also many things that one can do at the
detailed level to make certain concepts more transparent and certain derivations easier that
I cannot discuss in this short article. Even so, I hope that this article can be helpful to
those professors who want to teach a successful undergraduate course in GR that does not
abandon tensors.

I have a partial draft of a GR text that embodies the principles described in this paper
which I will bring to the conference. It is far from being a complete and polished text,
and I have no timetable for its completion, but it does illustrate one concrete approach to
teaching an undergraduate GR course with tensors. I used the draft in my GR course this
spring and was satisfied that the level and pacing was approximately correct.

The bottom line is that while I think that the mathematics of general relativity is chal-
lenging for undergraduates, one can successfully teach it if one pays appropriate attention
to techniques that simultaneously make the mathematics easier and the pedagogy more ef-
ficient and effective. Moreover, I think that there are significant pedagogical advantages to
students for doing so: they gain a deeper and more coherent understanding of the material
and a valuable sense of empowerment when they are able to master the tensor calculus and
solve the Einstein equation on their own power. We need not despair of reaching this goal!
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