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Important Instructions for the Exam Supervisor

• This examination has two parts. Part A has three questions and lasts for 90 minutes. Part B
also has three questions and lasts for 90 minutes.

• For each student, print out one copy of the exam and one copy of the answer sheets. Print
everything single-sided, and do not staple anything. Divide the exam into the instructions
(pages 2–3), Part A questions (pages 4–13), and Part B questions (pages 14–22).

• Begin by giving students the instructions and all of the answer sheets. Let the students
read the instructions and fill out their information on the answer sheets. They can keep the
instructions for both parts of the exam. Also give students blank sheets of paper to use as
scratch paper throughout the exam.

• Students may bring calculators, but they may not use symbolic math, programming, or
graphing features of these calculators. Calculators may not be shared, and their memory must
be cleared of data and programs. Cell phones or other electronics may not be used during the
exam or while the exam papers are present. Students may not use books or other references.

• To start the exam, give students the Part A questions, and allow 90 minutes to complete Part
A. Do not give students Part B during this time, even if they finish with time remaining. At
the end of the 90 minutes, collect the Part A questions and answer sheets.

• Then give students a 5 to 10 minute break. Then give them the Part B questions, and allow
90 minutes to complete Part B. Do not let students go back to Part A.

• At the end of the exam, collect everything, including the questions, the instructions, the
answer sheets, and the scratch paper. Students may not keep the exam questions, but they
may be returned to the students after April 19th, 2022.

• After the exam, sort each student’s answer sheets by page number. Scan every answer sheet,
including blank ones.

We acknowledge the following people for their contributions to this year’s exam (in alphabetical order):

Tengiz Bibilashvilli, Abijith Krishnan, Brian Skinner, and Kevin Zhou.
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AAPT
AIP 2022

UNITED  STATES  PHYSICS  TEAM

USA Physics Olympiad Exam

Instructions for the Student

• You should receive these instructions, the table on the next page, answer sheets, and blank
paper for scratch work. Read this page carefully before the exam begins.

• You may use a calculator, but its memory must be cleared of data and programs, and you may
not use symbolic math, programming, or graphing features. Calculators may not be shared.
Cell phones or other electronics may not be used during the exam or while the exam papers
are present. You may not use books or other outside references.

• When the exam begins, your proctor will give you the questions for Part A. You will have
90 minutes to complete three problems. Each question is worth 25 points, but they are not
necessarily of the same difficulty. If you finish all of the questions, you may check your work,
but you may not look at Part B during this time.

• After 90 minutes, your proctor will collect the questions and answer sheets for Part A. You
may then take a short break.

• Then you will work on Part B. You have 90 minutes to complete three problems. Each question
is worth 25 points. Do not look at Part A during this time. When the exam ends, you must
return all papers to the proctor, including the exam questions.

• Do not discuss the questions of this exam, or their solutions, until after April
19th, 2022. Violations of this rule may result in disqualification.

Below are instructions for writing your solutions.

• This year, all of your solutions will be written on official answer sheets. Nothing outside
these answer sheets will be graded. Before the exam begins, write your name, student AAPT
number, and proctor AAPT number as directed on the answer sheets.

• There are several answer sheets per problem. If you run out of space for a problem, you may
use the extra answer sheets, which are at the end of the answer sheet packet. To ensure this
work is graded, you must indicate, at the bottom of your last answer sheet for that problem,
that you are using these extra answer sheets.

• Only write within the frame of each answer sheet. To simplify grading, we recommend drawing
a box around your final answer for each subpart. You should organize your work linearly
and briefly explain your reasoning, which will help you earn partial credit. You may use either
pencil or pen, but sure to write clearly so your work will be legible after scanning.

• You may have to fit a line to data, which you can plot on the answer sheet with grid lines.
You may use a ruler, pencil, pen, or piece of paper as a straightedge.
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Reference table of possibly useful information

g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πϵ0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A

c = 3.00× 108 m/s kB = 1.38× 10−23 J/K

NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)

σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C

1 eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s

me = 9.109× 10−31 kg = 0.511 MeV/c2 (1 + x)n ≈ 1 + nx for |x| ≪ 1

sin θ ≈ θ − θ3/6 for |θ| ≪ 1 cos θ ≈ 1− θ2/2 for |θ| ≪ 1

You may use this sheet for both parts of the exam.

End of Instructions for the Student

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN
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Part A

Question A1

Moment of Clarity

Hold your pencil horizontally by its tip. To keep it still, you will have to exert a combination of
forces on its bottom and top. These forces can be viewed as a superposition of a net upward force,
and a pair of opposite forces. The former ensures the forces on the pencil are balanced, while the
latter provides a torque, called the bending moment, which ensures the torques on the pencil are
balanced. Since the bending moment arises from a pair of opposite forces, it doesn’t depend on the
choice of origin.

a. Consider a rod of length ℓ and mass per length λ. What is the bending moment you must exert
to hold the rod horizontally at its end?

Solution

Balance torques about the end of the rod. The weight is λgℓ, applied uniformly along the
rod, so the torque due to gravity is λgℓ2/2. This can only be balanced by the bending
moment, so it is λgℓ2/2.

Just as each piece of a string exerts a tension on neighboring pieces in equilibrium, each piece of
a solid rod also exerts a bending moment on its neighbors. For thin rods under heavy loads, this
bending moment can be the limiting factor that causes them to break.

ℓ ℓ

d

Suppose a rod is supported at both ends, so that it forms a bridge, as shown at left above. Assume
the supports are simple, so that they only provide an upward force, and no bending moment. In
equilibrium, a bending moment will appear throughout the rod. The magnitude of the maximum
bending moment the rod can exert at any point without breaking is M0, and the length of the rod
is ℓ. The bridge is loaded uniformly, with a mass per length of λ (including its own mass).

b. Find the maximum possible value of λ before the bridge collapses.

Solution

Placing the origin at the left support, consider the system consisting of the points on the
rod at 0 < x < x0. The external forces are:

• An upward force λgℓ/2 at the left end, due to the left support.

• A weight of λgx0.

• An upward force λg(x0 − ℓ/2) at the right end, due to the rest of the rod.

Now consider balancing torques on this system about x = x0. The external torques are:

• A clockwise torque λgℓx0/2 due to the left support.

Copyright ©2022 American Association of Physics Teachers
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• A counterclockwise torque λgx20/2 due to the weight.

• A bending moment M(x0) due to the rest of the rod.

For torque balance, the bending moment must be

M(x0) =
λgx20
2

− λgℓx0
2

=
λgx0(x0 − ℓ)

2
.

The rod is most likely to break where M is the largest, which occurs at the center, so

M0 =
λg(ℓ/2)2

2
.

Solving for λ gives

λ =
8M0

gℓ2
.

c. Now suppose that one support remains at the left end, while the other is a distance d > ℓ/2
away from the left end, as shown at right above. In static equilibrium, find the bending moment
M(x0) at a distance x0 < d from the left end.

Solution

To keep the expressions simple, let W = λgℓ be the weight of the rod. By balancing torques
about the left end of the rod, the external forces on the entire rod are

• A weight force W .

• An upward force Wℓ/2d from the right support.

• An upward force W −Wℓ/2d from the left support.

Note that the reason we specified d > ℓ/2 is because otherwise, the force from the left
support would become negative, in which case the bridge would tip over to the right.

Now consider the system consisting of the points on the rod with 0 < x < x0, where x0 < d.
To balance the forces, the upward force from the rest of the rod must be

Fr = W

(
x0
ℓ

+
ℓ

2d
− 1

)
.

The external torques on this system, about the left end, are

• A counterclockwise torque Wx20/2ℓ due to the weight.

• A clockwise torque Frx0 due to the rest of the rod.

• A bending moment M(x0) due to the rest of the rod.

Balancing the torques thus gives

M(x0) = −W

(
x20
2ℓ

+
ℓx0
2d

− x0

)
= −λg

(
x20
2

+
ℓ2x0
2d

− x0ℓ

)
.
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The sign of M is convention-dependent, so either sign is acceptable.

d. Find the value of d that maximizes the load λ that the bridge can take before collapsing.

Solution

If the bridge doesn’t collapse, then the magnitude of the bending moment must be less than
M0 everywhere throughout the rod. Consider how the bending moment varies as one moves
from the left end of the rod to the right. It begins at zero at x0 = 0, then reaches a positive
maximum somewhere between the two supports, when M ′(x0) vanishes. This occurs when

x0 = ℓ− ℓ2

2d

and which point there is a bending moment of

M1 =
λg

2

(
ℓ− ℓ2

2d

)2

.

As a check, we recover the answer to part (b) when d = ℓ.

Continuing rightward, the bending moment decreases, passes through zero at some point
x0 < d, and then becomes negative. (This change in sign is necessary to support the part
of the rod hanging to the right of the right support.) At x = d, the bending moment does
not change discontinuously, because the supports provide no bending moment. It then
smoothly returns to zero as x0 approaches ℓ. Therefore, the most negative value of the
bending moment occurs at x0 = d, giving a bending moment of magnitude

M2 = −M(d) =
λg

2
(ℓ− d)2 .

As another check, this matches the answer to part (a) for a rod of length ℓ− d.

As we move the right support closer to the center, the middle of the bridge becomes more
stable, since M1 decreases. At the same time, M2 increases, because more of the bridge is
hanging off the edge of the right support. The bridge will not collapse as long as both of
these quantities are less than M0. Thus, when the right support is placed most efficiently,
both of them will become equal to M0 just before the bridge collapses, which means we
should have M1 = M2. Equating them yields

1− ℓ

2d
= 1− d

ℓ

which gives the answer,

d =
ℓ√
2
.
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Question A2

Death Metal

A droplet of liquid metal has constant mass density and constant surface tension σ, which causes it
to form into a sphere of radius R. (Throughout this problem, you may neglect gravity.) A thin wire
is inserted into the droplet and connected to an electric current source which slowly charges the
droplet. There is a critical value of the charge, Q0, that causes the droplet to split in half. Each
half takes half the total charge, Q0/2, and half the mass of the original droplet. The “ejected half”
is repelled far away from the other half, which remains in contact with the wire.

a. For simplicity, assume the droplet splits as soon as the final state (after the droplet has split in
half and the two halves are well separated) has a lower total energy than that of the initial, single
droplet. What is the value of Q0? Give your answer in terms of a dimensionless constant A
multiplied by a product of powers of σ, R, and the vacuum permittivity ϵ0, and give the numeric
value of A to three significant figures.

Solution

Note that σ has units of energy/length2, R has units of length, and ϵ0 has units of
charge2/(energy × length). There is only one combination with dimensions of charge,
so we must have

Q0 = A
√
ϵ0σR3.

To find the value of A, note that a droplet of radius R and charge Q0 has a surface tension
energy 4πR2σ and an electrostatic energy Q2

0/2C, where C = 4πϵ0R is the capacitance of a
conducting sphere relative to infinity. Thus, the total energy of the drop is

E0 = 4πσR2 +
Q2

0

8πϵ0R
.

When the droplet splits, the new halves both have charge Q0/2 and a radius R1 = R/21/3,
since the total volume stays the same. The total energy of each of the halves is thus

E1 = 4πσR2
1 +

(Q0/2)
2

8πϵ0R1
.

Setting E0 = 2E1 and solving for Q0 gives

A = 8π

√
21/3 − 1

2− 21/3
≈ 14.9.

This model of the instability of a charged liquid drop is not exactly accurate, and was chosen
to keep the problem simple. In reality, it isn’t enough for the final state to have lower energy;
the repulsive electrostatic force needs to exceed the surface tension force, or else the bubble
can’t get to this state of lower energy. Accounting for this requires a different calculation,
first performed by Lord Rayleigh in 1882, which gives the “Rayleigh limit” of A = 8π ≈ 25.1.
Students who successfully derived this result also received full credit for part (a).

b. As more charge is added to the droplet by the current source, it continues to split in half
repeatedly. What is the charge qn on the nth ejected droplet? Give your answer in terms of Q0.
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Solution

Consider the situation just before the nth split. At this point, the initial droplet has split in
half n− 1 times, so it has a volume that is 2n−1 times smaller than the original volume, and
thus a radius Rn−1 = R/2(n−1)/3. By part (a), the charge required to split this drop is

Qn = A
√
ϵ0σR3

n−1 =
Q0

2(n−1)/2
.

Once the split happens, the nth ejected droplet takes half of this charge, so

qn =
Qn

2
=

Q0

2(n+1)/2
.

Also note that the radius of this droplet is Rn = R/2n/3.

c. In the limit where all of the initial mass of the droplet has been ejected, what is the total work
done by the current source? Give your answer in terms of a dimensionless constant B multiplied
by a product of powers of σ, R, and ϵ0, and give the numeric value of B to three significant
figures.

Solution

By dimensional analysis, the total work W done by the voltage source must be

W = BσR2.

The work W is equal to the difference between the energy Ef of the final state, where there
are many small droplets that have been dispersed to far away, and the energy Ei = 4πσR2 of
the initial, uncharged droplet. The final energy includes the surface tension and electrostatic
energy of all the small droplets, which have radius Rn and charge qn found in the previous
problem. This means that the final energy is

Ef =
∞∑
n=1

(
4πσR2

n +
q2n

8πϵ0Rn

)

= 4πσR2
∞∑
n=1

1

22n/3
+

Q2
0

16πR0ϵ0

∞∑
n=1

1

22n/3

= 4πσR2

(
1 +

A2

64π2

) ∞∑
n=1

1

22n/3

= 4πσR2

(
1 +

A2

64π2

)
1

22/3 − 1
= 4πσR2 × 2.30.

Here we have inserted the results found in part (b), then used the result of part (a) and
summed the geometric series. Thus,

W = Ef − Ei ≈ (4πσR2) × 1.30 = 16.3σR2.
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Question A3

Rainbow Road

In geometric optics, a caustic is a bright curve of light that appears when many incoming light rays
are focused in the same outgoing direction. The most famous example of a caustic is a rainbow,
which occurs when light interacts with spherical water droplets. Consider a spherical liquid droplet
of radius r with index of refraction 1 < n < 2, suspended in air with index of refraction n = 1.

a. Consider a light ray that enters the droplet with impact parameter b, reflects once off the inside
surface of the droplet, then exits, as shown at left below. Give your answers in terms of the
dimensionless impact parameter x = b/r. (Hint: the four marked angles are congruent.)

r

b
RI0

ϕ0

i. Find the angle by which the light ray is deflected at the first refraction.

ii. Find the angle by which the light ray is deflected at the reflection.

iii. Find the angle by which the light ray is deflected at the second refraction.

The sum of these three quantities is the net deflection angle ϕ(x). (The light can also reflect
inside more than once, or never enter at all, but for simplicity we will ignore these other paths.)

Solution

The angle the incoming light ray makes with to the normal of the droplet is θ1 = arcsin(x).
By Snell’s law, the angle to the normal inside the droplet is θ2 = arcsin

(
x/n

)
.

i. The first refraction causes a deflection of θ1 − θ2.

ii. The reflection keeps the angle to the normal the same, and causes a deflection of π − 2θ2.

iii. At this point, the angle to the normal is still θ2, and by Snell’s law, it reverts to θ1 outside
the droplet. This causes a deflection of θ1 − θ2, with the same sign as in part (i).

Thus, we conclude

ϕ(x) = π − 4θ2 + 2θ1 = π − 4 arcsin
(
x/n

)
+ 2arcsin(x).

The definition of ϕ is convention-dependent, so answers that differed by a minus sign and/or
a factor of 2π were also accepted.
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b. Next, we consider when caustics form in general. Suppose the droplet is uniformly illuminated
by parallel light rays of intensity I0, and sits at the center of a spherical screen of radius R ≫ r,
as shown at right above. Consider the light that enters near dimensionless impact parameter x0,
and exits near angle ϕ0 = ϕ(x0).

i. What is the power incident on the droplet at x0 ≤ x ≤ x0 + dx?

Solution
The region with impact parameters in this region is a thin annulus with radius rx and
cross-sectional width r dx. Then, the power is

2π(I0r
2)x0 |dx|.

ii. What is the area on the screen illuminated by the outgoing rays, at ϕ0 ≤ ϕ ≤ ϕ0 + dϕ?

Solution
By similar reasoning to the previous part, the area is

dA = 2πR2 sinϕ |dϕ|.

iii. A caustic occurs when the intensity of light on the screen diverges. Assume that ϕ0 ̸= 0 and
ϕ0 ≠ π. Under what conditions does light incident at x0 lead to a caustic at ϕ0? Express your
answer as a condition on the function ϕ(x).

Solution
By dividing our two answers, the intensity on the screen is

I(ϕ) =
I0r

2

R2

x

|dϕ/dx| sinϕ
.

This diverges when the denominator becomes zero, which in this case only occurs when
dϕ/dx vanishes. That is, a caustic will occur at ϕ0 = ϕ(x) if

ϕ′(x0) = 0.

Intuitively, this condition means that a broad range of incoming light rays end up focused
on a narrow curve on the screen.

c. Find the angle ϕ0 of the rainbow in terms of n. (Hint: the derivative of arcsin(x) is 1/
√
1− x2.)

Solution

The condition for a caustic is ϕ′(x0) = 0, which implies

2√
1− x20

− 4√
n2 − x20

= 0.
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Solving for x0 gives

x0 =

√
4− n2

3
.

In particular, this implies that a caustic will appear for the entire range of n considered in
this problem. Now, substituting this back into ϕ(x) gives

ϕ0 = π − 4 arcsin

(√
4− n2

3n2

)
+ 2arcsin

(√
4− n2

3

)
.

d. For water, the index of refraction of red light is 1.331, and the index of refraction of blue
light is 1.340. Find the angular width of the rainbow on the screen and give your answer in
degrees.

Solution

Substituting these two indices of refraction into the above equation and subtracting the
results yields 1.30◦.

e. A glory is an optical phenomenon which involves light scattered directly backward, at ϕ = π,
leading to an apparent halo around the shadow of an observer’s head. For what values of n is
there a caustic at ϕ = π? Can glories from water droplets be explained in terms of caustics?

Solution

Referring to our answer above, we have a caustic whenever the denominator |dϕ/dx| sinϕ
vanishes, and sinϕ vanishes for ϕ = π. Therefore, we will have a caustic at ϕ = π as long as
light can be reflected backwards at all, i.e. whenever there is a solution to ϕ(x) = π. That is
because at this angle, all the outgoing light is directed at a single point on the screen.

We thus need to solve
arcsin(x) = 2 arcsin

(
x/n

)
.

Taking the sine of both sides and using the double angle formula gives

x = 2(x/n) cos
(
arcsin

(
x/n

))
=

2x
√
n2 − x2

n2
.

Solving for n gives

n =

√
2x√

1−
√
1− x2

.

As the impact parameter x yielding the backward caustic ranges from 0 to 1, the value of n
ranges from a minimum of 2 to a minimum of

√
2. Thus,

√
2 < n < 2.

The index of refraction of water is outside this range, so glories from water droplets cannot
be explained in terms of caustics. The reason glories are visible is still under debate, though
all proposed mechanisms rely on the wave nature of light. For example, one proposed
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solution invoking “light tunneling” is explored in this paper. This problem was inspired by
Berry, Contemporary Physics 56:1 (2015): 2-16.
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STOP: Do Not Continue to Part B

If there is still time remaining for Part A, you should review your work for
Part A, but do not continue to Part B until instructed by your exam

supervisor.

Once you start Part B, you will not be able to return to Part A.
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Part B

Question B1

Virial Reality

The ideal gas law states that PVm = RT , where Vm = V/n is the volume per mole of gas. However,
any real gas will exhibit deviations from the ideal gas law, described by the virial expansion,

PVm = RT

(
1 +

B(T )

Vm
+

C(T )

V 2
m

+ . . .

)
.

For gases with low density, the higher-order terms are negligible, so in this problem we will neglect
all of the temperature-dependent terms in parentheses except for B(T )/Vm. The table below shows
measurements of B for nitrogen gas (N2) at atmospheric pressure, P = 1.01× 105 Pa.

T (K) B (cm3/mol)

100 −160
200 −35
300 −4.2
400 9.0
500 16.9
600 21.3

a. According to the ideal gas law, what is the value of Vm at temperatures 100 K, 300 K, and 600
K? Give your answers in SI units.

Solution

Plugging in the values and converting to m3/mol gives

Vm =
RT

P
=


8.23× 10−3m3/mol T = 100K

2.47× 10−2m3/mol T = 300K

4.94× 10−2m3/mol T = 600K

b. What is the percentage change in Vm at these temperatures if one accounts for B(T )?

Solution

The fractional change in volume is

∆Vm

Vm
≈ B(T )

Vm
≈


−1.9% T = 100K

−0.02% T = 300K

0.04% T = 600K

c. In 1910, van der Waals was awarded the Nobel Prize for formulating the equation(
P +

a

V 2
m

)
(Vm − b) = RT

which accurately describes many real gases. According to this equation, what is the form of
B(T )? You may assume that b ≪ Vm.
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Solution

We have

P +
a

V 2
m

=
RT

Vm − b
≈ RT

Vm

(
1 +

b

Vm

)
.

Rearranging yields

PVm ≈ RT

(
1 +

b

Vm
− a

VmRT

)
from which we conclude

B(T ) = b− a

RT
.

d. Using the data above, extract the values of a and b. Give your answers in SI units.

Solution

First, we convert the data points to SI units, giving

T (K) B(m3/mol)

100 −1.6× 10−4

200 −3.5× 10−5

300 −4.2× 10−6

400 9.0× 10−6

500 1.69× 10−5

600 2.13× 10−5

Now, plotting B versus 1/T , the slope is −a/R and the y-intercept is b.

The final result is
a = 0.18 Jm3/mol2, b = 6× 10−5m3/mol.

Any answer within 20% of this is acceptable.

e. In this problem, we have neglected terms in the virial expansion beyond B(T ), which is a good
approximation as long as the volume correction due to B(T ) itself is small. Assuming the van
der Waals equation holds, numerically estimate the temperature range within which the volume
correction due to B(T ) is at most 10%, for nitrogen gas at atmospheric pressure.
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Solution

We are looking for the temperature range where

|B(T )| ≲ Vm

10
≈ RT

10P
.

At high temperatures, B(T ) always yields a small correction for nitrogen at atmospheric
pressure. At low temperatures, B(T ) is dominated by the −a/RT term, so we require

T ≳

√
10Pa

R
= 50K.

Any answer within 25% of this is acceptable.
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Question B2

Broken Vase

A uniformly charged ring of radius d has total charge Q and is fixed in place. A point charge −q of
mass m is placed at its center. Both Q and q are positive. As a result, if the point charge is given a
small velocity along the ring’s axis of symmetry, it will oscillate about the ring’s center.

a. Find the period T of the oscillations.

Solution

Suppose the charge is displaced by a small distance ∆x. The horizontal component of the
electric field of the ring, at the charge, is

Ex ≈ E
∆x

d
=

Q

4πϵ0d3
∆x.

The restoring force is linear in ∆x, so it acts like a spring with spring constant

k =
Qq

4πϵ0d3
.

Thus, the period of oscillation is

T = 2π

√
m

k
=

√
16π3ϵ0md3

Qq
.

For the rest of the problem, we will consider this situation in a reference frame where the ring is
moving along its axis of symmetry with a constant speed v, which may be comparable to the speed
of light c. In this frame, the ring and point charge have charge Q′ and q′, and the point charge still
oscillates about the ring’s center.

b. What is the period T ′ of oscillation of the point charge in this frame?

Solution

By directly applying time dilation to the answer of part (a),

T ′ = γT =
1√

1− v2/c2

√
16π3ϵ0md3

Qq
.

c. When the charge is a small distance ∆x from the center of the ring, find the restoring force in
terms of q′, Q′, v, d, ∆x, and fundamental constants.

Solution

The position of the charge, relative to each charge in the ring, is at θ ≈ 90◦. Thus, using
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the provided information, we have

Ex ≈ Q′

4πϵ0d2
1− v2/c2

(1− v2/c2)3/2
sin θ.

Thus, the restoring force is

F = − Q′q′

4πϵ0d3
1√

1− v2/c2
∆x.

d. Suppose the restoring force has the form F = −k∆x. Find the period of the resulting oscillations
in terms of k, m, v, and fundamental constants.

Solution

By the definition of force given in the information below, we have

F =
dp

dt
= m

d

dt

(
v√

1− v2/c2

)
.

Carrying out the derivative and simplifying gives

F =
m

(1− v2/c2)3/2
dv

dt
= −k∆x

For small oscillations, the velocity is always approximately equal to the original velocity v.
Thus, the motion is still simple harmonic, except that the mass is effectively

meff =
m

(1− v2/c2)3/2
.

Thus, we conclude

T ′ = 2π

√
meff

k
= 2π

√
m

k

1

(1− v2/c2)3/2
.

e. Suppose the electric charge transforms between reference frames as Q′ = γnQ and q′ = γnq. By
combining your answers to parts (c) and (d), and comparing to part (b), find the value of n.

Solution

The final result of part (c) tells us that

k =
Q′q′

4πϵ0d3
1√

1− v2/c2
.

Plugging this into the answer to part (d) gives

T ′ =
1√

1− v2/c2

√
16π3ϵ0md3

Q′q′
.
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This is precisely the same as the answer to part (b) if Q′q′ = Qq, or in other words,

n = 0.

That is, the electric charge is Lorentz invariant.

To solve this problem, you will need the following results from relativity:

• The Lorentz factor is defined as γ = 1/
√
1− v2/c2.

• The momentum of a particle is p = γmv, and m is the same in all frames.

• The electromagnetic force on a charge q is F = dp/dt = q(E+ v ×B).

• The electric field of a charge q at the origin with constant velocity v is radial, with magnitude

E =
q

4πϵ0r2
1− v2/c2

(1− (v2/c2) sin2 θ)3/2

where θ is the angle of r to v.
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Question B3

Time Crystal

The kinetic energy E, momentum p, and velocity v of a particle moving in one dimension satisfy

F =
dp

dt
=

dE

dx
, v =

dE

dp

where F is the external force. For a free particle, the momentum and energy are related by
E = p2/2m. However, when an electron moves inside a metal, its interactions with the crystal
lattice of positively charged ions lead to a different relationship between momentum and energy. All
of the above identities still apply, but now suppose that

E(p) = V (1− cos(pb))

where V and b are constants that depend on the metal. This result is inherently quantum mechanical
in origin, and as we will see, it leads to some rather strange behavior.

a. First, we investigate the motion of the electron in general.

i. Find the velocity as a function of p.

Solution
Using the provided identity,

v =
dE

dp
= V b sin(pb).

ii. The effective mass m∗ of the electron is defined so that it satisfies F = m∗a. Find the effective
mass as a function of p.

Solution
By definition, we have

dp

dt
= m∗

dv

dt

so by the chain rule, we conclude

m∗ =

(
dv

dp

)−1

=
1

V b2
1

cos(pb)
.

Note that at some points, this mass is negative! Applying a forward force can cause an
electron to accelerate backwards, which leads to the strange result we’ll find in part b.ii.
(This doesn’t contradict conservation of momentum, because the forward momentum
ends up imparted to the crystal lattice, causing the solid as a whole to recoil.)

b. Now suppose a metal rod of infinite length, aligned with the x-axis, contains conducting electrons
of charge −e, initially with zero momentum. At time t = 0, an electric field E = E0x̂ is turned
on, and is experienced by every electron in the rod. Ignore the interactions of the electrons with
each other.

i. For an electron that starts at x = 0 at time t = 0, find its position x(t).
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Solution
The momentum is p = Ft = −eE0t, so using the result of part a.i,

v(t) = −V b sin(eE0tb).

Integrating both sides gives

x(t) =
V

eE0

(
cos(eE0tb)− 1

)
.

ii. If the number of conducting electrons per unit volume is n, and the cross-sectional area of the
rod is A, find the average current in the rod over a long time.

Solution
The electrons just oscillate, with zero average velocity. Therefore, the average current
they supply is zero! This strange phenomenon is called a Bloch oscillation. It doesn’t
occur in ordinary metals because of the frequent collisions between electrons and ions,
considered in the parts below.

iii. Now suppose that every time τ , each electron suffers a collision with the crystal lattice, causing
its momentum to reset to zero. In the limit of frequent collisions, eE0bτ ≪ 1, find the average
current in the rod over a long time.

Solution
For small times, the velocity is approximately

v(t) ≈ −(eE0V b2) t

where we applied the small angle approximation to the result of part b.i. Thus, if collisions
happen every time τ , the average velocity is

v̄ = −1

2
(eE0V b2) τ.

Therefore, the average current is

I = −nAev̄ =
1

2
nAe2E0V b2τ.

The plus sign makes sense, since it means current flows parallel to the applied field.

iv. If τ can be freely adjusted, estimate the maximum possible average current in the rod, up to
a dimensionless constant.

Solution
If τ is small, then more frequent collisions slow down the current, as we showed in part
b.iii. But if τ is very large, then the current cancels itself out due to Bloch oscillations, as
we showed in part b.ii. Therefore, the highest possible current occurs when the electrons
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have time to accelerate to a substantial fraction of their maximum possible speed V b,
but collide before their effective mass goes negative. This occurs when

eE0τb ∼ 1

and gives an average current
I ∼ nAeV b.

Some students tried to answer this part using dimensional analysis, but that won’t work,
since there are 5 variables and only 4 independent dimensions (mass, length, time, and
charge). Incidentally, you can find the dimensionless coefficient by solving a simple
equation numerically, though this wasn’t required.
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